mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| 
 | |
| from spacy import util
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.tests.util import make_tempdir
 | |
| 
 | |
| 
 | |
| def test_label_types():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(nlp.create_pipe("morphologizer"))
 | |
|     nlp.get_pipe("morphologizer").add_label("Feat=A")
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.get_pipe("morphologizer").add_label(9)
 | |
| 
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     ("I like green eggs", {"morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"], "pos": ["NOUN", "VERB", "ADJ", "NOUN"]}),
 | |
|     ("Eat blue ham", {"morphs": ["Feat=V", "Feat=J", "Feat=N"], "pos": ["VERB", "ADJ", "NOUN"]}),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     morphologizer = nlp.create_pipe("morphologizer")
 | |
|     for inst in TRAIN_DATA:
 | |
|         for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
 | |
|             morphologizer.add_label(morph + "|POS=" + pos)
 | |
|     nlp.add_pipe(morphologizer)
 | |
|     optimizer = nlp.begin_training()
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
 | |
|     assert losses["morphologizer"] < 0.00001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I like blue eggs"
 | |
|     doc = nlp(test_text)
 | |
|     gold_morphs = ["Feat=N|POS=NOUN", "Feat=V|POS=VERB", "Feat=J|POS=ADJ", "Feat=N|POS=NOUN"]
 | |
|     assert [t.morph_ for t in doc] == gold_morphs
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         assert gold_morphs == [t.morph_ for t in doc2]
 |