mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
0591e67265
* Convert all individual values explicitly to uint64 for array-based doc representations
* Temporarily test with latest numpy v1.24.0rc
* Remove unnecessary conversion from attr_t
* Reduce number of individual casts
* Convert specifically from int32 to uint64
* Revert "Temporarily test with latest numpy v1.24.0rc"
This reverts commit eb0e3c5006
.
* Also use int32 in tests
137 lines
4.9 KiB
Python
137 lines
4.9 KiB
Python
import numpy
|
|
import pytest
|
|
|
|
from spacy.tokens import Doc
|
|
from spacy.attrs import ORTH, SHAPE, POS, DEP, MORPH
|
|
|
|
|
|
@pytest.mark.issue(2203)
|
|
def test_issue2203(en_vocab):
|
|
"""Test that lemmas are set correctly in doc.from_array."""
|
|
words = ["I", "'ll", "survive"]
|
|
tags = ["PRP", "MD", "VB"]
|
|
lemmas = ["-PRON-", "will", "survive"]
|
|
tag_ids = [en_vocab.strings.add(tag) for tag in tags]
|
|
lemma_ids = [en_vocab.strings.add(lemma) for lemma in lemmas]
|
|
doc = Doc(en_vocab, words=words)
|
|
# Work around lemma corruption problem and set lemmas after tags
|
|
doc.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
|
|
doc.from_array("LEMMA", numpy.array(lemma_ids, dtype="uint64"))
|
|
assert [t.tag_ for t in doc] == tags
|
|
assert [t.lemma_ for t in doc] == lemmas
|
|
# We need to serialize both tag and lemma, since this is what causes the bug
|
|
doc_array = doc.to_array(["TAG", "LEMMA"])
|
|
new_doc = Doc(doc.vocab, words=words).from_array(["TAG", "LEMMA"], doc_array)
|
|
assert [t.tag_ for t in new_doc] == tags
|
|
assert [t.lemma_ for t in new_doc] == lemmas
|
|
|
|
|
|
def test_doc_array_attr_of_token(en_vocab):
|
|
doc = Doc(en_vocab, words=["An", "example", "sentence"])
|
|
example = doc.vocab["example"]
|
|
assert example.orth != example.shape
|
|
feats_array = doc.to_array((ORTH, SHAPE))
|
|
assert feats_array[0][0] != feats_array[0][1]
|
|
assert feats_array[0][0] != feats_array[0][1]
|
|
|
|
|
|
def test_doc_stringy_array_attr_of_token(en_vocab):
|
|
doc = Doc(en_vocab, words=["An", "example", "sentence"])
|
|
example = doc.vocab["example"]
|
|
assert example.orth != example.shape
|
|
feats_array = doc.to_array((ORTH, SHAPE))
|
|
feats_array_stringy = doc.to_array(("ORTH", "SHAPE"))
|
|
assert feats_array_stringy[0][0] == feats_array[0][0]
|
|
assert feats_array_stringy[0][1] == feats_array[0][1]
|
|
|
|
|
|
def test_doc_scalar_attr_of_token(en_vocab):
|
|
doc = Doc(en_vocab, words=["An", "example", "sentence"])
|
|
example = doc.vocab["example"]
|
|
assert example.orth != example.shape
|
|
feats_array = doc.to_array(ORTH)
|
|
assert feats_array.shape == (3,)
|
|
|
|
|
|
def test_doc_array_tag(en_vocab):
|
|
words = ["A", "nice", "sentence", "."]
|
|
pos = ["DET", "ADJ", "NOUN", "PUNCT"]
|
|
doc = Doc(en_vocab, words=words, pos=pos)
|
|
assert doc[0].pos != doc[1].pos != doc[2].pos != doc[3].pos
|
|
feats_array = doc.to_array((ORTH, POS))
|
|
assert feats_array[0][1] == doc[0].pos
|
|
assert feats_array[1][1] == doc[1].pos
|
|
assert feats_array[2][1] == doc[2].pos
|
|
assert feats_array[3][1] == doc[3].pos
|
|
|
|
|
|
def test_doc_array_morph(en_vocab):
|
|
words = ["Eat", "blue", "ham"]
|
|
morph = ["Feat=V", "Feat=J", "Feat=N"]
|
|
doc = Doc(en_vocab, words=words, morphs=morph)
|
|
assert morph[0] == str(doc[0].morph)
|
|
assert morph[1] == str(doc[1].morph)
|
|
assert morph[2] == str(doc[2].morph)
|
|
|
|
feats_array = doc.to_array((ORTH, MORPH))
|
|
assert feats_array[0][1] == doc[0].morph.key
|
|
assert feats_array[1][1] == doc[1].morph.key
|
|
assert feats_array[2][1] == doc[2].morph.key
|
|
|
|
|
|
def test_doc_array_dep(en_vocab):
|
|
words = ["A", "nice", "sentence", "."]
|
|
deps = ["det", "amod", "ROOT", "punct"]
|
|
doc = Doc(en_vocab, words=words, deps=deps)
|
|
feats_array = doc.to_array((ORTH, DEP))
|
|
assert feats_array[0][1] == doc[0].dep
|
|
assert feats_array[1][1] == doc[1].dep
|
|
assert feats_array[2][1] == doc[2].dep
|
|
assert feats_array[3][1] == doc[3].dep
|
|
|
|
|
|
@pytest.mark.parametrize("attrs", [["ORTH", "SHAPE"], "IS_ALPHA"])
|
|
def test_doc_array_to_from_string_attrs(en_vocab, attrs):
|
|
"""Test that both Doc.to_array and Doc.from_array accept string attrs,
|
|
as well as single attrs and sequences of attrs.
|
|
"""
|
|
words = ["An", "example", "sentence"]
|
|
doc = Doc(en_vocab, words=words)
|
|
Doc(en_vocab, words=words).from_array(attrs, doc.to_array(attrs))
|
|
|
|
|
|
def test_doc_array_idx(en_vocab):
|
|
"""Test that Doc.to_array can retrieve token start indices"""
|
|
words = ["An", "example", "sentence"]
|
|
offsets = Doc(en_vocab, words=words).to_array("IDX")
|
|
assert offsets[0] == 0
|
|
assert offsets[1] == 3
|
|
assert offsets[2] == 11
|
|
|
|
|
|
def test_doc_from_array_heads_in_bounds(en_vocab):
|
|
"""Test that Doc.from_array doesn't set heads that are out of bounds."""
|
|
words = ["This", "is", "a", "sentence", "."]
|
|
doc = Doc(en_vocab, words=words)
|
|
for token in doc:
|
|
token.head = doc[0]
|
|
|
|
# correct
|
|
arr = doc.to_array(["HEAD"])
|
|
doc_from_array = Doc(en_vocab, words=words)
|
|
doc_from_array.from_array(["HEAD"], arr)
|
|
|
|
# head before start
|
|
arr = doc.to_array(["HEAD"])
|
|
arr[0] = numpy.int32(-1).astype(numpy.uint64)
|
|
doc_from_array = Doc(en_vocab, words=words)
|
|
with pytest.raises(ValueError):
|
|
doc_from_array.from_array(["HEAD"], arr)
|
|
|
|
# head after end
|
|
arr = doc.to_array(["HEAD"])
|
|
arr[0] = numpy.int32(5).astype(numpy.uint64)
|
|
doc_from_array = Doc(en_vocab, words=words)
|
|
with pytest.raises(ValueError):
|
|
doc_from_array.from_array(["HEAD"], arr)
|