mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 18:36:36 +03:00
108 lines
2.6 KiB
Django/Jinja
108 lines
2.6 KiB
Django/Jinja
{# Template for "CPU" configs. The transformer will use a different template. #}
|
|
# This is an auto-generated partial config for training a model.
|
|
# To use it for training, auto-fill it with all default values.
|
|
# python -m spacy init config config.cfg --base base_config.cfg
|
|
[paths]
|
|
train = ""
|
|
dev = ""
|
|
|
|
[nlp]
|
|
lang = "{{ lang }}"
|
|
pipeline = {{ pipeline|safe }}
|
|
vectors = {{ ('"en_vectors_web_lg"' if optimize == "accuracy" else false)|safe }}
|
|
tokenizer = {"@tokenizers": "spacy.Tokenizer.v1"}
|
|
|
|
[components]
|
|
|
|
[components.tok2vec]
|
|
factory = "tok2vec"
|
|
|
|
[components.tok2vec.model]
|
|
@architectures = "spacy.Tok2Vec.v1"
|
|
|
|
[components.tok2vec.model.embed]
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
width = ${components.tok2vec.model.encode:width}
|
|
rows = {{ 2000 if optimize == "efficiency" else 7000 }}
|
|
also_embed_subwords = {{ true if has_letters else false }}
|
|
also_use_static_vectors = {{ true if optimize == "accuracy" else false }}
|
|
|
|
[components.tok2vec.model.encode]
|
|
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
|
width = {{ 96 if optimize == "efficiency" else 256 }}
|
|
depth = {{ 4 if optimize == "efficiency" else 8 }}
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
|
|
{% if "tagger" in components %}
|
|
[components.tagger]
|
|
factory = "tagger"
|
|
|
|
[components.tagger.model]
|
|
@architectures = "spacy.Tagger.v1"
|
|
nO = null
|
|
|
|
[components.tagger.model.tok2vec]
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
width = ${components.tok2vec.model.encode:width}
|
|
{%- endif %}
|
|
|
|
{% if "parser" in components -%}
|
|
[components.parser]
|
|
factory = "parser"
|
|
|
|
[components.parser.model]
|
|
@architectures = "spacy.TransitionBasedParser.v1"
|
|
nr_feature_tokens = 8
|
|
hidden_width = 128
|
|
maxout_pieces = 3
|
|
use_upper = true
|
|
nO = null
|
|
|
|
[components.parser.model.tok2vec]
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
width = ${components.tok2vec.model.encode:width}
|
|
{%- endif %}
|
|
|
|
{% if "ner" in components -%}
|
|
[components.ner]
|
|
factory = "ner"
|
|
|
|
[components.ner.model]
|
|
@architectures = "spacy.TransitionBasedParser.v1"
|
|
nr_feature_tokens = 6
|
|
hidden_width = 64
|
|
maxout_pieces = 2
|
|
use_upper = true
|
|
nO = null
|
|
|
|
[components.ner.model.tok2vec]
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
width = ${components.tok2vec.model.encode:width}
|
|
{% endif -%}
|
|
|
|
[training]
|
|
|
|
[training.train_corpus]
|
|
@readers = "spacy.Corpus.v1"
|
|
path = ${paths:train}
|
|
|
|
[training.dev_corpus]
|
|
@readers = "spacy.Corpus.v1"
|
|
path = ${paths:dev}
|
|
|
|
[training.score_weights]
|
|
{%- if "tagger" in components %}
|
|
tag_acc = {{ (1.0 / components|length)|round() }}
|
|
{%- endif -%}
|
|
{%- if "parser" in components %}
|
|
dep_uas = 0.0
|
|
dep_las = {{ (1.0 / components|length)|round() }}
|
|
sents_f = 0.0
|
|
{%- endif %}
|
|
{%- if "ner" in components %}
|
|
ents_f = {{ (1.0 / components|length)|round() }}
|
|
ents_p = 0.0
|
|
ents_r = 0.0
|
|
{%- endif -%}
|