spaCy/spacy/tests/serialize/test_serialize_pipeline.py
Matthew Honnibal 333b1a308b
Adapt parser and NER for transformers (#5449)
* Draft layer for BILUO actions

* Fixes to biluo layer

* WIP on BILUO layer

* Add tests for BILUO layer

* Format

* Fix transitions

* Update test

* Link in the simple_ner

* Update BILUO tagger

* Update __init__

* Import simple_ner

* Update test

* Import

* Add files

* Add config

* Fix label passing for BILUO and tagger

* Fix label handling for simple_ner component

* Update simple NER test

* Update config

* Hack train script

* Update BILUO layer

* Fix SimpleNER component

* Update train_from_config

* Add biluo_to_iob helper

* Add IOB layer

* Add IOBTagger model

* Update biluo layer

* Update SimpleNER tagger

* Update BILUO

* Read random seed in train-from-config

* Update use of normal_init

* Fix normalization of gradient in SimpleNER

* Update IOBTagger

* Remove print

* Tweak masking in BILUO

* Add dropout in SimpleNER

* Update thinc

* Tidy up simple_ner

* Fix biluo model

* Unhack train-from-config

* Update setup.cfg and requirements

* Add tb_framework.py for parser model

* Try to avoid memory leak in BILUO

* Move ParserModel into spacy.ml, avoid need for subclass.

* Use updated parser model

* Remove incorrect call to model.initializre in PrecomputableAffine

* Update parser model

* Avoid divide by zero in tagger

* Add extra dropout layer in tagger

* Refine minibatch_by_words function to avoid oom

* Fix parser model after refactor

* Try to avoid div-by-zero in SimpleNER

* Fix infinite loop in minibatch_by_words

* Use SequenceCategoricalCrossentropy in Tagger

* Fix parser model when hidden layer

* Remove extra dropout from tagger

* Add extra nan check in tagger

* Fix thinc version

* Update tests and imports

* Fix test

* Update test

* Update tests

* Fix tests

* Fix test

Co-authored-by: Ines Montani <ines@ines.io>
2020-05-18 22:23:33 +02:00

153 lines
5.5 KiB
Python

import pytest
from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer
from spacy.pipeline import Tensorizer, TextCategorizer, SentenceRecognizer
from spacy.ml.models.defaults import default_parser, default_tensorizer, default_tagger
from spacy.ml.models.defaults import default_textcat, default_senter
from ..util import make_tempdir
test_parsers = [DependencyParser, EntityRecognizer]
@pytest.fixture
def parser(en_vocab):
parser = DependencyParser(en_vocab, default_parser())
parser.add_label("nsubj")
return parser
@pytest.fixture
def blank_parser(en_vocab):
parser = DependencyParser(en_vocab, default_parser())
return parser
@pytest.fixture
def taggers(en_vocab):
model = default_tagger()
tagger1 = Tagger(en_vocab, model)
tagger2 = Tagger(en_vocab, model)
return tagger1, tagger2
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
parser = Parser(en_vocab, default_parser())
new_parser = Parser(en_vocab, default_parser())
new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"]))
bytes_2 = new_parser.to_bytes(exclude=["vocab"])
bytes_3 = parser.to_bytes(exclude=["vocab"])
assert len(bytes_2) == len(bytes_3)
assert bytes_2 == bytes_3
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
parser = Parser(en_vocab, default_parser())
with make_tempdir() as d:
file_path = d / "parser"
parser.to_disk(file_path)
parser_d = Parser(en_vocab, default_parser())
parser_d = parser_d.from_disk(file_path)
parser_bytes = parser.to_bytes(exclude=["model", "vocab"])
parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"])
assert len(parser_bytes) == len(parser_d_bytes)
assert parser_bytes == parser_d_bytes
def test_to_from_bytes(parser, blank_parser):
assert parser.model is not True
assert blank_parser.model is not True
assert blank_parser.moves.n_moves != parser.moves.n_moves
bytes_data = parser.to_bytes(exclude=["vocab"])
# the blank parser needs to be resized before we can call from_bytes
blank_parser.model.attrs["resize_output"](blank_parser.model, parser.moves.n_moves)
blank_parser.from_bytes(bytes_data)
assert blank_parser.model is not True
assert blank_parser.moves.n_moves == parser.moves.n_moves
@pytest.mark.skip(
reason="This seems to be a dict ordering bug somewhere. Only failing on some platforms."
)
def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers):
tagger1 = taggers[0]
tagger1_b = tagger1.to_bytes()
tagger1 = tagger1.from_bytes(tagger1_b)
assert tagger1.to_bytes() == tagger1_b
new_tagger1 = Tagger(en_vocab, default_tagger()).from_bytes(tagger1_b)
new_tagger1_b = new_tagger1.to_bytes()
assert len(new_tagger1_b) == len(tagger1_b)
assert new_tagger1_b == tagger1_b
def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
tagger1, tagger2 = taggers
with make_tempdir() as d:
file_path1 = d / "tagger1"
file_path2 = d / "tagger2"
tagger1.to_disk(file_path1)
tagger2.to_disk(file_path2)
tagger1_d = Tagger(en_vocab, default_tagger()).from_disk(file_path1)
tagger2_d = Tagger(en_vocab, default_tagger()).from_disk(file_path2)
assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
def test_serialize_tensorizer_roundtrip_bytes(en_vocab):
tensorizer = Tensorizer(en_vocab, default_tensorizer())
tensorizer_b = tensorizer.to_bytes(exclude=["vocab"])
new_tensorizer = Tensorizer(en_vocab, default_tensorizer()).from_bytes(tensorizer_b)
assert new_tensorizer.to_bytes(exclude=["vocab"]) == tensorizer_b
def test_serialize_tensorizer_roundtrip_disk(en_vocab):
tensorizer = Tensorizer(en_vocab, default_tensorizer())
with make_tempdir() as d:
file_path = d / "tensorizer"
tensorizer.to_disk(file_path)
tensorizer_d = Tensorizer(en_vocab, default_tensorizer()).from_disk(file_path)
assert tensorizer.to_bytes(exclude=["vocab"]) == tensorizer_d.to_bytes(
exclude=["vocab"]
)
def test_serialize_textcat_empty(en_vocab):
# See issue #1105
textcat = TextCategorizer(
en_vocab, default_textcat(), labels=["ENTITY", "ACTION", "MODIFIER"]
)
textcat.to_bytes(exclude=["vocab"])
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_pipe_exclude(en_vocab, Parser):
def get_new_parser():
new_parser = Parser(en_vocab, default_parser())
return new_parser
parser = Parser(en_vocab, default_parser())
parser.cfg["foo"] = "bar"
new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]))
assert "foo" in new_parser.cfg
new_parser = get_new_parser().from_bytes(
parser.to_bytes(exclude=["vocab"]), exclude=["cfg"]
)
assert "foo" not in new_parser.cfg
new_parser = get_new_parser().from_bytes(
parser.to_bytes(exclude=["cfg"]), exclude=["vocab"]
)
assert "foo" not in new_parser.cfg
with pytest.raises(ValueError):
parser.to_bytes(cfg=False, exclude=["vocab"])
with pytest.raises(ValueError):
get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]), cfg=False)
def test_serialize_sentencerecognizer(en_vocab):
sr = SentenceRecognizer(en_vocab, default_senter())
sr_b = sr.to_bytes()
sr_d = SentenceRecognizer(en_vocab, default_senter()).from_bytes(sr_b)
assert sr.to_bytes() == sr_d.to_bytes()