spaCy/spacy/training/gold_io.pyx
Daniël de Kok e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module (#12721)
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00

211 lines
7.8 KiB
Cython

import json
import warnings
import srsly
from .. import util
from ..errors import Warnings
from ..tokens import Doc
from .iob_utils import offsets_to_biluo_tags, tags_to_entities
def docs_to_json(docs, doc_id=0, ner_missing_tag="O"):
"""Convert a list of Doc objects into the JSON-serializable format used by
the spacy train command.
docs (iterable / Doc): The Doc object(s) to convert.
doc_id (int): Id for the JSON.
RETURNS (dict): The data in spaCy's JSON format
- each input doc will be treated as a paragraph in the output doc
"""
if isinstance(docs, Doc):
docs = [docs]
json_doc = {"id": doc_id, "paragraphs": []}
for i, doc in enumerate(docs):
raw = None if doc.has_unknown_spaces else doc.text
json_para = {'raw': raw, "sentences": [], "cats": [], "entities": [], "links": []}
for cat, val in doc.cats.items():
json_cat = {"label": cat, "value": val}
json_para["cats"].append(json_cat)
# warning: entities information is currently duplicated as
# doc-level "entities" and token-level "ner"
for ent in doc.ents:
ent_tuple = (ent.start_char, ent.end_char, ent.label_)
json_para["entities"].append(ent_tuple)
if ent.kb_id_:
link_dict = {(ent.start_char, ent.end_char): {ent.kb_id_: 1.0}}
json_para["links"].append(link_dict)
biluo_tags = offsets_to_biluo_tags(doc, json_para["entities"], missing=ner_missing_tag)
attrs = ("TAG", "POS", "MORPH", "LEMMA", "DEP", "ENT_IOB")
include_annotation = {attr: doc.has_annotation(attr) for attr in attrs}
for j, sent in enumerate(doc.sents):
json_sent = {"tokens": [], "brackets": []}
for token in sent:
json_token = {"id": token.i, "orth": token.text, "space": token.whitespace_}
if include_annotation["TAG"]:
json_token["tag"] = token.tag_
if include_annotation["POS"]:
json_token["pos"] = token.pos_
if include_annotation["MORPH"]:
json_token["morph"] = str(token.morph)
if include_annotation["LEMMA"]:
json_token["lemma"] = token.lemma_
if include_annotation["DEP"]:
json_token["head"] = token.head.i-token.i
json_token["dep"] = token.dep_
if include_annotation["ENT_IOB"]:
json_token["ner"] = biluo_tags[token.i]
json_sent["tokens"].append(json_token)
json_para["sentences"].append(json_sent)
json_doc["paragraphs"].append(json_para)
return json_doc
def read_json_file(loc, docs_filter=None, limit=None):
"""Read Example dictionaries from a json file or directory."""
loc = util.ensure_path(loc)
if loc.is_dir():
for filename in sorted(loc.iterdir()):
yield from read_json_file(loc / filename, limit=limit)
else:
with loc.open("rb") as file_:
utf8_str = file_.read()
for json_doc in json_iterate(utf8_str):
if docs_filter is not None and not docs_filter(json_doc):
continue
for json_paragraph in json_to_annotations(json_doc):
yield json_paragraph
def json_to_annotations(doc):
"""Convert an item in the JSON-formatted training data to the format
used by Example.
doc (dict): One entry in the training data.
YIELDS (tuple): The reformatted data - one training example per paragraph
"""
for paragraph in doc["paragraphs"]:
example = {"text": paragraph.get("raw", None)}
words = []
spaces = []
ids = []
tags = []
ner_tags = []
pos = []
morphs = []
lemmas = []
heads = []
labels = []
sent_starts = []
brackets = []
for sent in paragraph["sentences"]:
sent_start_i = len(words)
for i, token in enumerate(sent["tokens"]):
words.append(token["orth"])
spaces.append(token.get("space", None))
ids.append(token.get('id', sent_start_i + i))
tags.append(token.get("tag", None))
pos.append(token.get("pos", None))
morphs.append(token.get("morph", None))
lemmas.append(token.get("lemma", None))
if "head" in token:
heads.append(token["head"] + sent_start_i + i)
else:
heads.append(None)
if "dep" in token:
labels.append(token["dep"])
# Ensure ROOT label is case-insensitive
if labels[-1].lower() == "root":
labels[-1] = "ROOT"
else:
labels.append(None)
ner_tags.append(token.get("ner", None))
if i == 0:
sent_starts.append(1)
else:
sent_starts.append(-1)
if "brackets" in sent:
brackets.extend((b["first"] + sent_start_i,
b["last"] + sent_start_i, b["label"])
for b in sent["brackets"])
example["token_annotation"] = dict(
ids=ids,
words=words,
spaces=spaces,
sent_starts=sent_starts,
brackets=brackets
)
# avoid including dummy values that looks like gold info was present
if any(tags):
example["token_annotation"]["tags"] = tags
if any(pos):
example["token_annotation"]["pos"] = pos
if any(morphs):
example["token_annotation"]["morphs"] = morphs
if any(lemmas):
example["token_annotation"]["lemmas"] = lemmas
if any(head is not None for head in heads):
example["token_annotation"]["heads"] = heads
if any(labels):
example["token_annotation"]["deps"] = labels
cats = {}
for cat in paragraph.get("cats", {}):
cats[cat["label"]] = cat["value"]
example["doc_annotation"] = dict(
cats=cats,
entities=ner_tags,
links=paragraph.get("links", [])
)
yield example
def json_iterate(bytes utf8_str):
# We should've made these files jsonl...But since we didn't, parse out
# the docs one-by-one to reduce memory usage.
# It's okay to read in the whole file -- just don't parse it into JSON.
cdef long file_length = len(utf8_str)
if file_length > 2 ** 30:
warnings.warn(Warnings.W027.format(size=file_length))
raw = <char*>utf8_str
cdef int square_depth = 0
cdef int curly_depth = 0
cdef int inside_string = 0
cdef int escape = 0
cdef long start = -1
cdef char c
cdef char quote = ord('"')
cdef char backslash = ord("\\")
cdef char open_square = ord("[")
cdef char close_square = ord("]")
cdef char open_curly = ord("{")
cdef char close_curly = ord("}")
for i in range(file_length):
c = raw[i]
if escape:
escape = False
continue
if c == backslash:
escape = True
continue
if c == quote:
inside_string = not inside_string
continue
if inside_string:
continue
if c == open_square:
square_depth += 1
elif c == close_square:
square_depth -= 1
elif c == open_curly:
if square_depth == 1 and curly_depth == 0:
start = i
curly_depth += 1
elif c == close_curly:
curly_depth -= 1
if square_depth == 1 and curly_depth == 0:
substr = utf8_str[start : i + 1].decode("utf8")
yield srsly.json_loads(substr)
start = -1