mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Fill in deps if not provided with heads Before this change, if heads were passed without deps they would be silently ignored, which could be confusing. See #8334. * Use "dep" instead of a blank string This is the customary placeholder dep. It might be better to show an error here instead though. * Throw error on heads without deps * Add a test * Fix tests * Formatting * Fix all tests * Fix a test I missed * Revise error message * Clean up whitespace Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			495 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			495 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from spacy.attrs import LEMMA
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.tokens import Doc, Token
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_merge(en_tokenizer):
 | |
|     text = "WKRO played songs by the beach boys all night"
 | |
|     attrs = {
 | |
|         "tag": "NAMED",
 | |
|         "lemma": "LEMMA",
 | |
|         "ent_type": "TYPE",
 | |
|         "morph": "Number=Plur",
 | |
|     }
 | |
|     doc = en_tokenizer(text)
 | |
|     assert len(doc) == 9
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[4:7], attrs=attrs)
 | |
|         retokenizer.merge(doc[7:9], attrs=attrs)
 | |
|     assert len(doc) == 6
 | |
|     assert doc[4].text == "the beach boys"
 | |
|     assert doc[4].text_with_ws == "the beach boys "
 | |
|     assert doc[4].tag_ == "NAMED"
 | |
|     assert doc[4].lemma_ == "LEMMA"
 | |
|     assert str(doc[4].morph) == "Number=Plur"
 | |
|     assert doc[5].text == "all night"
 | |
|     assert doc[5].text_with_ws == "all night"
 | |
|     assert doc[5].tag_ == "NAMED"
 | |
|     assert str(doc[5].morph) == "Number=Plur"
 | |
|     assert doc[5].lemma_ == "LEMMA"
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_merge_children(en_tokenizer):
 | |
|     """Test that attachments work correctly after merging."""
 | |
|     text = "WKRO played songs by the beach boys all night"
 | |
|     attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"}
 | |
|     doc = en_tokenizer(text)
 | |
|     assert len(doc) == 9
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[4:7], attrs=attrs)
 | |
|     for word in doc:
 | |
|         if word.i < word.head.i:
 | |
|             assert word in list(word.head.lefts)
 | |
|         elif word.i > word.head.i:
 | |
|             assert word in list(word.head.rights)
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_merge_hang(en_tokenizer):
 | |
|     text = "through North and South Carolina"
 | |
|     doc = en_tokenizer(text)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[3:5], attrs={"lemma": "", "ent_type": "ORG"})
 | |
|         retokenizer.merge(doc[1:2], attrs={"lemma": "", "ent_type": "ORG"})
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_retokenizer(en_tokenizer):
 | |
|     doc = en_tokenizer("WKRO played songs by the beach boys all night")
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[4:7])
 | |
|     assert len(doc) == 7
 | |
|     assert doc[4].text == "the beach boys"
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_retokenizer_attrs(en_tokenizer):
 | |
|     doc = en_tokenizer("WKRO played songs by the beach boys all night")
 | |
|     # test both string and integer attributes and values
 | |
|     attrs = {LEMMA: "boys", "ENT_TYPE": doc.vocab.strings["ORG"]}
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[4:7], attrs=attrs)
 | |
|     assert len(doc) == 7
 | |
|     assert doc[4].text == "the beach boys"
 | |
|     assert doc[4].lemma_ == "boys"
 | |
|     assert doc[4].ent_type_ == "ORG"
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_lex_attrs(en_tokenizer):
 | |
|     """Test that lexical attributes can be changed (see #2390)."""
 | |
|     doc = en_tokenizer("WKRO played beach boys songs")
 | |
|     assert not any(token.is_stop for token in doc)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[2:4], attrs={"LEMMA": "boys", "IS_STOP": True})
 | |
|     assert doc[2].text == "beach boys"
 | |
|     assert doc[2].lemma_ == "boys"
 | |
|     assert doc[2].is_stop
 | |
|     new_doc = Doc(doc.vocab, words=["beach boys"])
 | |
|     assert new_doc[0].is_stop
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_spans_merge_tokens(en_tokenizer):
 | |
|     text = "Los Angeles start."
 | |
|     heads = [1, 2, 2, 2]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     assert len(doc) == 4
 | |
|     assert doc[0].head.text == "Angeles"
 | |
|     assert doc[1].head.text == "start"
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         attrs = {"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"}
 | |
|         retokenizer.merge(doc[0:2], attrs=attrs)
 | |
|     assert len(doc) == 3
 | |
|     assert doc[0].text == "Los Angeles"
 | |
|     assert doc[0].head.text == "start"
 | |
|     assert doc[0].ent_type_ == "GPE"
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_spans_merge_tokens_default_attrs(en_vocab):
 | |
|     words = ["The", "players", "start", "."]
 | |
|     lemmas = [t.lower() for t in words]
 | |
|     heads = [1, 2, 2, 2]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     tags = ["DT", "NN", "VBZ", "."]
 | |
|     pos = ["DET", "NOUN", "VERB", "PUNCT"]
 | |
|     doc = Doc(
 | |
|         en_vocab, words=words, tags=tags, pos=pos, heads=heads, deps=deps, lemmas=lemmas
 | |
|     )
 | |
|     assert len(doc) == 4
 | |
|     assert doc[0].text == "The"
 | |
|     assert doc[0].tag_ == "DT"
 | |
|     assert doc[0].pos_ == "DET"
 | |
|     assert doc[0].lemma_ == "the"
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[0:2])
 | |
|     assert len(doc) == 3
 | |
|     assert doc[0].text == "The players"
 | |
|     assert doc[0].tag_ == "NN"
 | |
|     assert doc[0].pos_ == "NOUN"
 | |
|     assert doc[0].lemma_ == "the players"
 | |
|     doc = Doc(
 | |
|         en_vocab, words=words, tags=tags, pos=pos, heads=heads, deps=deps, lemmas=lemmas
 | |
|     )
 | |
|     assert len(doc) == 4
 | |
|     assert doc[0].text == "The"
 | |
|     assert doc[0].tag_ == "DT"
 | |
|     assert doc[0].pos_ == "DET"
 | |
|     assert doc[0].lemma_ == "the"
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[0:2])
 | |
|         retokenizer.merge(doc[2:4])
 | |
|     assert len(doc) == 2
 | |
|     assert doc[0].text == "The players"
 | |
|     assert doc[0].tag_ == "NN"
 | |
|     assert doc[0].pos_ == "NOUN"
 | |
|     assert doc[0].lemma_ == "the players"
 | |
|     assert doc[1].text == "start ."
 | |
|     assert doc[1].tag_ == "VBZ"
 | |
|     assert doc[1].pos_ == "VERB"
 | |
|     assert doc[1].lemma_ == "start ."
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_spans_merge_heads(en_vocab):
 | |
|     words = ["I", "found", "a", "pilates", "class", "near", "work", "."]
 | |
|     heads = [1, 1, 4, 6, 1, 4, 5, 1]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
 | |
|     assert len(doc) == 8
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"}
 | |
|         retokenizer.merge(doc[3:5], attrs=attrs)
 | |
|     assert len(doc) == 7
 | |
|     assert doc[0].head.i == 1
 | |
|     assert doc[1].head.i == 1
 | |
|     assert doc[2].head.i == 3
 | |
|     assert doc[3].head.i == 1
 | |
|     assert doc[4].head.i in [1, 3]
 | |
|     assert doc[5].head.i == 4
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_spans_merge_non_disjoint(en_tokenizer):
 | |
|     text = "Los Angeles start."
 | |
|     doc = en_tokenizer(text)
 | |
|     with pytest.raises(ValueError):
 | |
|         with doc.retokenize() as retokenizer:
 | |
|             retokenizer.merge(
 | |
|                 doc[0:2],
 | |
|                 attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
 | |
|             )
 | |
|             retokenizer.merge(
 | |
|                 doc[0:1],
 | |
|                 attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
 | |
|             )
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_span_np_merges(en_tokenizer):
 | |
|     text = "displaCy is a parse tool built with Javascript"
 | |
|     heads = [1, 1, 4, 4, 1, 4, 5, 6]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     assert doc[4].head.i == 1
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         attrs = {"tag": "NP", "lemma": "tool", "ent_type": "O"}
 | |
|         retokenizer.merge(doc[2:5], attrs=attrs)
 | |
|     assert doc[2].head.i == 1
 | |
| 
 | |
|     text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
 | |
|     heads = [1, 1, 10, 7, 3, 3, 7, 10, 9, 10, 1, 10, 11, 12, 13, 13, 1]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for ent in doc.ents:
 | |
|             attrs = {"tag": ent.label_, "lemma": ent.lemma_, "ent_type": ent.label_}
 | |
|             retokenizer.merge(ent, attrs=attrs)
 | |
| 
 | |
|     text = "One test with entities like New York City so the ents list is not void"
 | |
|     heads = [1, 1, 1, 2, 3, 6, 7, 4, 12, 11, 11, 12, 1, 12, 12]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for ent in doc.ents:
 | |
|             retokenizer.merge(ent)
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_spans_entity_merge(en_tokenizer):
 | |
|     # fmt: off
 | |
|     text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
 | |
|     heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12, 2, 15]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
 | |
|     ents = [("PERSON", 0, 2), ("GPE", 10, 11), ("PERSON", 13, 15)]
 | |
|     ents = ["O"] * len(heads)
 | |
|     ents[0] = "B-PERSON"
 | |
|     ents[1] = "I-PERSON"
 | |
|     ents[10] = "B-GPE"
 | |
|     ents[13] = "B-PERSON"
 | |
|     ents[14] = "I-PERSON"
 | |
|     # fmt: on
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(
 | |
|         tokens.vocab,
 | |
|         words=[t.text for t in tokens],
 | |
|         heads=heads,
 | |
|         deps=deps,
 | |
|         tags=tags,
 | |
|         ents=ents,
 | |
|     )
 | |
|     assert len(doc) == 17
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for ent in doc.ents:
 | |
|             ent_type = max(w.ent_type_ for w in ent)
 | |
|             attrs = {"lemma": ent.root.lemma_, "ent_type": ent_type}
 | |
|             retokenizer.merge(ent, attrs=attrs)
 | |
|     # check looping is ok
 | |
|     assert len(doc) == 15
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
 | |
|     # Test entity IOB stays consistent after merging
 | |
|     words = ["a", "b", "c", "d", "e"]
 | |
|     doc = Doc(Vocab(), words=words)
 | |
|     doc.ents = [
 | |
|         (doc.vocab.strings.add("ent-abc"), 0, 3),
 | |
|         (doc.vocab.strings.add("ent-d"), 3, 4),
 | |
|     ]
 | |
|     assert doc[0].ent_iob_ == "B"
 | |
|     assert doc[1].ent_iob_ == "I"
 | |
|     assert doc[2].ent_iob_ == "I"
 | |
|     assert doc[3].ent_iob_ == "B"
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[0:2])
 | |
|     assert len(doc) == len(words) - 1
 | |
|     assert doc[0].ent_iob_ == "B"
 | |
|     assert doc[1].ent_iob_ == "I"
 | |
| 
 | |
|     # Test that IOB stays consistent with provided IOB
 | |
|     words = ["a", "b", "c", "d", "e"]
 | |
|     doc = Doc(Vocab(), words=words)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         attrs = {"ent_type": "ent-abc", "ent_iob": 1}
 | |
|         retokenizer.merge(doc[0:3], attrs=attrs)
 | |
|         retokenizer.merge(doc[3:5], attrs=attrs)
 | |
|     assert doc[0].ent_iob_ == "B"
 | |
|     assert doc[1].ent_iob_ == "I"
 | |
| 
 | |
|     # if no parse/heads, the first word in the span is the root and provides
 | |
|     # default values
 | |
|     words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
 | |
|     doc = Doc(Vocab(), words=words)
 | |
|     doc.ents = [
 | |
|         (doc.vocab.strings.add("ent-de"), 3, 5),
 | |
|         (doc.vocab.strings.add("ent-fg"), 5, 7),
 | |
|     ]
 | |
|     assert doc[3].ent_iob_ == "B"
 | |
|     assert doc[4].ent_iob_ == "I"
 | |
|     assert doc[5].ent_iob_ == "B"
 | |
|     assert doc[6].ent_iob_ == "I"
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[2:4])
 | |
|         retokenizer.merge(doc[4:6])
 | |
|         retokenizer.merge(doc[7:9])
 | |
|     assert len(doc) == 6
 | |
|     assert doc[3].ent_iob_ == "B"
 | |
|     assert doc[3].ent_type_ == "ent-de"
 | |
|     assert doc[4].ent_iob_ == "B"
 | |
|     assert doc[4].ent_type_ == "ent-fg"
 | |
| 
 | |
|     # if there is a parse, span.root provides default values
 | |
|     words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
 | |
|     heads = [0, 0, 3, 0, 0, 0, 5, 0, 0]
 | |
|     ents = ["O"] * len(words)
 | |
|     ents[3] = "B-ent-de"
 | |
|     ents[4] = "I-ent-de"
 | |
|     ents[5] = "B-ent-fg"
 | |
|     ents[6] = "I-ent-fg"
 | |
|     deps = ["dep"] * len(words)
 | |
|     en_vocab.strings.add("ent-de")
 | |
|     en_vocab.strings.add("ent-fg")
 | |
|     en_vocab.strings.add("dep")
 | |
|     doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
 | |
|     assert doc[2:4].root == doc[3]  # root of 'c d' is d
 | |
|     assert doc[4:6].root == doc[4]  # root is 'e f' is e
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[2:4])
 | |
|         retokenizer.merge(doc[4:6])
 | |
|         retokenizer.merge(doc[7:9])
 | |
|     assert len(doc) == 6
 | |
|     assert doc[2].ent_iob_ == "B"
 | |
|     assert doc[2].ent_type_ == "ent-de"
 | |
|     assert doc[3].ent_iob_ == "I"
 | |
|     assert doc[3].ent_type_ == "ent-de"
 | |
|     assert doc[4].ent_iob_ == "B"
 | |
|     assert doc[4].ent_type_ == "ent-fg"
 | |
| 
 | |
|     # check that B is preserved if span[start] is B
 | |
|     words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
 | |
|     heads = [0, 0, 3, 4, 0, 0, 5, 0, 0]
 | |
|     ents = ["O"] * len(words)
 | |
|     ents[3] = "B-ent-de"
 | |
|     ents[4] = "I-ent-de"
 | |
|     ents[5] = "B-ent-de"
 | |
|     ents[6] = "I-ent-de"
 | |
|     deps = ["dep"] * len(words)
 | |
|     doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[3:5])
 | |
|         retokenizer.merge(doc[5:7])
 | |
|     assert len(doc) == 7
 | |
|     assert doc[3].ent_iob_ == "B"
 | |
|     assert doc[3].ent_type_ == "ent-de"
 | |
|     assert doc[4].ent_iob_ == "B"
 | |
|     assert doc[4].ent_type_ == "ent-de"
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer):
 | |
|     # fmt: off
 | |
|     text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
 | |
|     heads = [1, 2, 2, 4, 2, 4, 4, 2, 9, 9, 9, 10, 9, 9, 15, 13, 9]
 | |
|     deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
 | |
|             'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
 | |
|             'compound', 'dobj', 'punct']
 | |
|     # fmt: on
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     sent1, sent2 = list(doc.sents)
 | |
|     init_len = len(sent1)
 | |
|     init_len2 = len(sent2)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         attrs = {"lemma": "none", "ent_type": "none"}
 | |
|         retokenizer.merge(doc[0:2], attrs=attrs)
 | |
|         retokenizer.merge(doc[-2:], attrs=attrs)
 | |
|     sent1, sent2 = list(doc.sents)
 | |
|     assert len(sent1) == init_len - 1
 | |
|     assert len(sent2) == init_len2 - 1
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_spans_subtree_size_check(en_tokenizer):
 | |
|     # fmt: off
 | |
|     text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
 | |
|     heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12]
 | |
|     deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr",
 | |
|             "nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound",
 | |
|             "dobj"]
 | |
|     # fmt: on
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     sent1 = list(doc.sents)[0]
 | |
|     init_len = len(list(sent1.root.subtree))
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         attrs = {"lemma": "none", "ent_type": "none"}
 | |
|         retokenizer.merge(doc[0:2], attrs=attrs)
 | |
|     assert len(list(sent1.root.subtree)) == init_len - 1
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_merge_extension_attrs(en_vocab):
 | |
|     Token.set_extension("a", default=False, force=True)
 | |
|     Token.set_extension("b", default="nothing", force=True)
 | |
|     doc = Doc(en_vocab, words=["hello", "world", "!"])
 | |
|     # Test regular merging
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         attrs = {"lemma": "hello world", "_": {"a": True, "b": "1"}}
 | |
|         retokenizer.merge(doc[0:2], attrs=attrs)
 | |
|     assert doc[0].lemma_ == "hello world"
 | |
|     assert doc[0]._.a is True
 | |
|     assert doc[0]._.b == "1"
 | |
|     # Test bulk merging
 | |
|     doc = Doc(en_vocab, words=["hello", "world", "!", "!"])
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[0:2], attrs={"_": {"a": True, "b": "1"}})
 | |
|         retokenizer.merge(doc[2:4], attrs={"_": {"a": None, "b": "2"}})
 | |
|     assert doc[0]._.a is True
 | |
|     assert doc[0]._.b == "1"
 | |
|     assert doc[1]._.a is None
 | |
|     assert doc[1]._.b == "2"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("underscore_attrs", [{"a": "x"}, {"b": "x"}, {"c": "x"}, [1]])
 | |
| def test_doc_retokenize_merge_extension_attrs_invalid(en_vocab, underscore_attrs):
 | |
|     Token.set_extension("a", getter=lambda x: x, force=True)
 | |
|     Token.set_extension("b", method=lambda x: x, force=True)
 | |
|     doc = Doc(en_vocab, words=["hello", "world", "!"])
 | |
|     attrs = {"_": underscore_attrs}
 | |
|     with pytest.raises(ValueError):
 | |
|         with doc.retokenize() as retokenizer:
 | |
|             retokenizer.merge(doc[0:2], attrs=attrs)
 | |
| 
 | |
| 
 | |
| def test_doc_retokenizer_merge_lex_attrs(en_vocab):
 | |
|     """Test that retokenization also sets attributes on the lexeme if they're
 | |
|     lexical attributes. For example, if a user sets IS_STOP, it should mean that
 | |
|     "all tokens with that lexeme" are marked as a stop word, so the ambiguity
 | |
|     here is acceptable. Also see #2390.
 | |
|     """
 | |
|     # Test regular merging
 | |
|     doc = Doc(en_vocab, words=["hello", "world", "!"])
 | |
|     assert not any(t.is_stop for t in doc)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[0:2], attrs={"lemma": "hello world", "is_stop": True})
 | |
|     assert doc[0].lemma_ == "hello world"
 | |
|     assert doc[0].is_stop
 | |
|     # Test bulk merging
 | |
|     doc = Doc(en_vocab, words=["eins", "zwei", "!", "!"])
 | |
|     assert not any(t.like_num for t in doc)
 | |
|     assert not any(t.is_stop for t in doc)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[0:2], attrs={"like_num": True})
 | |
|         retokenizer.merge(doc[2:4], attrs={"is_stop": True})
 | |
|     assert doc[0].like_num
 | |
|     assert doc[1].is_stop
 | |
|     assert not doc[0].is_stop
 | |
|     assert not doc[1].like_num
 | |
|     # Test that norm is only set on tokens
 | |
|     doc = Doc(en_vocab, words=["eins", "zwei", "!", "!"])
 | |
|     assert doc[0].norm_ == "eins"
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[0:1], attrs={"norm": "1"})
 | |
|     assert doc[0].norm_ == "1"
 | |
|     assert en_vocab["eins"].norm_ == "eins"
 | |
| 
 | |
| 
 | |
| def test_retokenize_skip_duplicates(en_vocab):
 | |
|     """Test that the retokenizer automatically skips duplicate spans instead
 | |
|     of complaining about overlaps. See #3687."""
 | |
|     doc = Doc(en_vocab, words=["hello", "world", "!"])
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[0:2])
 | |
|         retokenizer.merge(doc[0:2])
 | |
|     assert len(doc) == 2
 | |
|     assert doc[0].text == "hello world"
 | |
| 
 | |
| 
 | |
| def test_retokenize_disallow_zero_length(en_vocab):
 | |
|     doc = Doc(en_vocab, words=["hello", "world", "!"])
 | |
|     with pytest.raises(ValueError):
 | |
|         with doc.retokenize() as retokenizer:
 | |
|             retokenizer.merge(doc[1:1])
 | |
| 
 | |
| 
 | |
| def test_doc_retokenize_merge_without_parse_keeps_sents(en_tokenizer):
 | |
|     text = "displaCy is a parse tool built with Javascript"
 | |
|     sent_starts = [1, 0, 0, 0, 1, 0, 0, 0]
 | |
|     tokens = en_tokenizer(text)
 | |
| 
 | |
|     # merging within a sentence keeps all sentence boundaries
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], sent_starts=sent_starts)
 | |
|     assert len(list(doc.sents)) == 2
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[1:3])
 | |
|     assert len(list(doc.sents)) == 2
 | |
| 
 | |
|     # merging over a sentence boundary unsets it by default
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], sent_starts=sent_starts)
 | |
|     assert len(list(doc.sents)) == 2
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[3:6])
 | |
|     assert doc[3].is_sent_start == None
 | |
| 
 | |
|     # merging over a sentence boundary and setting sent_start
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], sent_starts=sent_starts)
 | |
|     assert len(list(doc.sents)) == 2
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[3:6], attrs={"sent_start": True})
 | |
|     assert len(list(doc.sents)) == 2
 |