mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Change span lemmas to use original whitespace (fix #8368) This is a redo of #8371 based off master. The test for this required some changes to existing tests. I don't think the changes were significant but I'd like someone to check them. * Remove mystery docstring This sentence was uncompleted for years, and now we will never know how it ends.
		
			
				
	
	
		
			790 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			790 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| from __future__ import unicode_literals
 | ||
| 
 | ||
| cimport numpy as np
 | ||
| from libc.math cimport sqrt
 | ||
| 
 | ||
| import numpy
 | ||
| from thinc.api import get_array_module
 | ||
| import warnings
 | ||
| import copy
 | ||
| 
 | ||
| from .doc cimport token_by_start, token_by_end, get_token_attr, _get_lca_matrix
 | ||
| from ..structs cimport TokenC, LexemeC
 | ||
| from ..typedefs cimport flags_t, attr_t, hash_t
 | ||
| from ..attrs cimport attr_id_t
 | ||
| from ..parts_of_speech cimport univ_pos_t
 | ||
| from ..attrs cimport *
 | ||
| from ..lexeme cimport Lexeme
 | ||
| from ..symbols cimport dep
 | ||
| 
 | ||
| from ..util import normalize_slice
 | ||
| from ..errors import Errors, Warnings
 | ||
| from .underscore import Underscore, get_ext_args
 | ||
| 
 | ||
| 
 | ||
| cdef class Span:
 | ||
|     """A slice from a Doc object.
 | ||
| 
 | ||
|     DOCS: https://spacy.io/api/span
 | ||
|     """
 | ||
|     @classmethod
 | ||
|     def set_extension(cls, name, **kwargs):
 | ||
|         """Define a custom attribute which becomes available as `Span._`.
 | ||
| 
 | ||
|         name (str): Name of the attribute to set.
 | ||
|         default: Optional default value of the attribute.
 | ||
|         getter (callable): Optional getter function.
 | ||
|         setter (callable): Optional setter function.
 | ||
|         method (callable): Optional method for method extension.
 | ||
|         force (bool): Force overwriting existing attribute.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#set_extension
 | ||
|         USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
 | ||
|         """
 | ||
|         if cls.has_extension(name) and not kwargs.get("force", False):
 | ||
|             raise ValueError(Errors.E090.format(name=name, obj="Span"))
 | ||
|         Underscore.span_extensions[name] = get_ext_args(**kwargs)
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def get_extension(cls, name):
 | ||
|         """Look up a previously registered extension by name.
 | ||
| 
 | ||
|         name (str): Name of the extension.
 | ||
|         RETURNS (tuple): A `(default, method, getter, setter)` tuple.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#get_extension
 | ||
|         """
 | ||
|         return Underscore.span_extensions.get(name)
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def has_extension(cls, name):
 | ||
|         """Check whether an extension has been registered.
 | ||
| 
 | ||
|         name (str): Name of the extension.
 | ||
|         RETURNS (bool): Whether the extension has been registered.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#has_extension
 | ||
|         """
 | ||
|         return name in Underscore.span_extensions
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def remove_extension(cls, name):
 | ||
|         """Remove a previously registered extension.
 | ||
| 
 | ||
|         name (str): Name of the extension.
 | ||
|         RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
 | ||
|             removed extension.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#remove_extension
 | ||
|         """
 | ||
|         if not cls.has_extension(name):
 | ||
|             raise ValueError(Errors.E046.format(name=name))
 | ||
|         return Underscore.span_extensions.pop(name)
 | ||
| 
 | ||
|     def __cinit__(self, Doc doc, int start, int end, label=0, vector=None,
 | ||
|                   vector_norm=None, kb_id=0):
 | ||
|         """Create a `Span` object from the slice `doc[start : end]`.
 | ||
| 
 | ||
|         doc (Doc): The parent document.
 | ||
|         start (int): The index of the first token of the span.
 | ||
|         end (int): The index of the first token after the span.
 | ||
|         label (uint64): A label to attach to the Span, e.g. for named entities.
 | ||
|         kb_id (uint64): An identifier from a Knowledge Base to capture the meaning of a named entity.
 | ||
|         vector (ndarray[ndim=1, dtype='float32']): A meaning representation
 | ||
|             of the span.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#init
 | ||
|         """
 | ||
|         if not (0 <= start <= end <= len(doc)):
 | ||
|             raise IndexError(Errors.E035.format(start=start, end=end, length=len(doc)))
 | ||
|         self.doc = doc
 | ||
|         if isinstance(label, str):
 | ||
|             label = doc.vocab.strings.add(label)
 | ||
|         if isinstance(kb_id, str):
 | ||
|             kb_id = doc.vocab.strings.add(kb_id)
 | ||
|         if label not in doc.vocab.strings:
 | ||
|             raise ValueError(Errors.E084.format(label=label))
 | ||
| 
 | ||
|         self.c = SpanC(
 | ||
|             label=label,
 | ||
|             kb_id=kb_id,
 | ||
|             start=start,
 | ||
|             end=end,
 | ||
|             start_char=doc[start].idx if start < doc.length else 0,
 | ||
|             end_char=doc[end - 1].idx + len(doc[end - 1]) if end >= 1 else 0,
 | ||
|         )
 | ||
|         self._vector = vector
 | ||
|         self._vector_norm = vector_norm
 | ||
| 
 | ||
|     def __richcmp__(self, Span other, int op):
 | ||
|         if other is None:
 | ||
|             if op == 0 or op == 1 or op == 2:
 | ||
|                 return False
 | ||
|             else:
 | ||
|                 return True
 | ||
|         # <
 | ||
|         if op == 0:
 | ||
|             return self.c.start_char < other.c.start_char
 | ||
|         # <=
 | ||
|         elif op == 1:
 | ||
|             return self.c.start_char <= other.c.start_char
 | ||
|         # ==
 | ||
|         elif op == 2:
 | ||
|             # Do the cheap comparisons first
 | ||
|             return (
 | ||
|                 (self.c.start_char == other.c.start_char) and \
 | ||
|                 (self.c.end_char == other.c.end_char) and \
 | ||
|                 (self.c.label == other.c.label) and \
 | ||
|                 (self.c.kb_id == other.c.kb_id) and \
 | ||
|                 (self.doc == other.doc)
 | ||
|             )
 | ||
|         # !=
 | ||
|         elif op == 3:
 | ||
|             # Do the cheap comparisons first
 | ||
|             return not (
 | ||
|                 (self.c.start_char == other.c.start_char) and \
 | ||
|                 (self.c.end_char == other.c.end_char) and \
 | ||
|                 (self.c.label == other.c.label) and \
 | ||
|                 (self.c.kb_id == other.c.kb_id) and \
 | ||
|                 (self.doc == other.doc)
 | ||
|             )
 | ||
|         # >
 | ||
|         elif op == 4:
 | ||
|             return self.c.start_char > other.c.start_char
 | ||
|         # >=
 | ||
|         elif op == 5:
 | ||
|             return self.c.start_char >= other.c.start_char
 | ||
| 
 | ||
|     def __hash__(self):
 | ||
|         return hash((self.doc, self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id))
 | ||
| 
 | ||
|     def __len__(self):
 | ||
|         """Get the number of tokens in the span.
 | ||
| 
 | ||
|         RETURNS (int): The number of tokens in the span.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#len
 | ||
|         """
 | ||
|         if self.c.end < self.c.start:
 | ||
|             return 0
 | ||
|         return self.c.end - self.c.start
 | ||
| 
 | ||
|     def __repr__(self):
 | ||
|         return self.text
 | ||
| 
 | ||
|     def __getitem__(self, object i):
 | ||
|         """Get a `Token` or a `Span` object
 | ||
| 
 | ||
|         i (int or tuple): The index of the token within the span, or slice of
 | ||
|             the span to get.
 | ||
|         RETURNS (Token or Span): The token at `span[i]`.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#getitem
 | ||
|         """
 | ||
|         if isinstance(i, slice):
 | ||
|             start, end = normalize_slice(len(self), i.start, i.stop, i.step)
 | ||
|             return Span(self.doc, start + self.start, end + self.start)
 | ||
|         else:
 | ||
|             if i < 0:
 | ||
|                 token_i = self.c.end + i
 | ||
|             else:
 | ||
|                 token_i = self.c.start + i
 | ||
|             if self.c.start <= token_i < self.c.end:
 | ||
|                 return self.doc[token_i]
 | ||
|             else:
 | ||
|                 raise IndexError(Errors.E1002)
 | ||
| 
 | ||
|     def __iter__(self):
 | ||
|         """Iterate over `Token` objects.
 | ||
| 
 | ||
|         YIELDS (Token): A `Token` object.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#iter
 | ||
|         """
 | ||
|         for i in range(self.c.start, self.c.end):
 | ||
|             yield self.doc[i]
 | ||
| 
 | ||
|     def __reduce__(self):
 | ||
|         raise NotImplementedError(Errors.E112)
 | ||
| 
 | ||
|     @property
 | ||
|     def _(self):
 | ||
|         """Custom extension attributes registered via `set_extension`."""
 | ||
|         return Underscore(Underscore.span_extensions, self,
 | ||
|                           start=self.c.start_char, end=self.c.end_char)
 | ||
| 
 | ||
|     def as_doc(self, *, bint copy_user_data=False):
 | ||
|         """Create a `Doc` object with a copy of the `Span`'s data.
 | ||
| 
 | ||
|         copy_user_data (bool): Whether or not to copy the original doc's user data.
 | ||
|         RETURNS (Doc): The `Doc` copy of the span.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#as_doc
 | ||
|         """
 | ||
|         words = [t.text for t in self]
 | ||
|         spaces = [bool(t.whitespace_) for t in self]
 | ||
|         cdef Doc doc = Doc(self.doc.vocab, words=words, spaces=spaces)
 | ||
|         array_head = self.doc._get_array_attrs()
 | ||
|         array = self.doc.to_array(array_head)
 | ||
|         array = array[self.start : self.end]
 | ||
|         self._fix_dep_copy(array_head, array)
 | ||
|         # Fix initial IOB so the entities are valid for doc.ents below.
 | ||
|         if len(array) > 0 and ENT_IOB in array_head:
 | ||
|             ent_iob_col = array_head.index(ENT_IOB)
 | ||
|             if array[0][ent_iob_col] == 1:
 | ||
|                 array[0][ent_iob_col] = 3
 | ||
|         doc.from_array(array_head, array)
 | ||
|         # Set partial entities at the beginning or end of the span to have
 | ||
|         # missing entity annotation. Note: the initial partial entity could be
 | ||
|         # detected from the IOB annotation but the final partial entity can't,
 | ||
|         # so detect and remove both in the same way by checking self.ents.
 | ||
|         span_ents = {(ent.start, ent.end) for ent in self.ents}
 | ||
|         doc_ents = doc.ents
 | ||
|         if len(doc_ents) > 0:
 | ||
|             # Remove initial partial ent
 | ||
|             if (doc_ents[0].start + self.start, doc_ents[0].end + self.start) not in span_ents:
 | ||
|                 doc.set_ents([], missing=[doc_ents[0]], default="unmodified")
 | ||
|             # Remove final partial ent
 | ||
|             if (doc_ents[-1].start + self.start, doc_ents[-1].end + self.start) not in span_ents:
 | ||
|                 doc.set_ents([], missing=[doc_ents[-1]], default="unmodified")
 | ||
|         doc.noun_chunks_iterator = self.doc.noun_chunks_iterator
 | ||
|         doc.user_hooks = self.doc.user_hooks
 | ||
|         doc.user_span_hooks = self.doc.user_span_hooks
 | ||
|         doc.user_token_hooks = self.doc.user_token_hooks
 | ||
|         doc.vector = self.vector
 | ||
|         doc.vector_norm = self.vector_norm
 | ||
|         doc.tensor = self.doc.tensor[self.start : self.end]
 | ||
|         for key, value in self.doc.cats.items():
 | ||
|             if hasattr(key, "__len__") and len(key) == 3:
 | ||
|                 cat_start, cat_end, cat_label = key
 | ||
|                 if cat_start == self.start_char and cat_end == self.end_char:
 | ||
|                     doc.cats[cat_label] = value
 | ||
|         if copy_user_data:
 | ||
|             user_data = {}
 | ||
|             char_offset = self.start_char
 | ||
|             for key, value in self.doc.user_data.items():
 | ||
|                 if isinstance(key, tuple) and len(key) == 4 and key[0] == "._.":
 | ||
|                     data_type, name, start, end = key
 | ||
|                     if start is not None or end is not None:
 | ||
|                         start -= char_offset
 | ||
|                         if end is not None:
 | ||
|                             end -= char_offset
 | ||
|                         user_data[(data_type, name, start, end)] = copy.copy(value)
 | ||
|                 else:
 | ||
|                     user_data[key] = copy.copy(value)
 | ||
|             doc.user_data = user_data
 | ||
|         return doc
 | ||
| 
 | ||
|     def _fix_dep_copy(self, attrs, array):
 | ||
|         """ Rewire dependency links to make sure their heads fall into the span
 | ||
|         while still keeping the correct number of sentences. """
 | ||
|         cdef int length = len(array)
 | ||
|         cdef attr_t value
 | ||
|         cdef int i, head_col, ancestor_i
 | ||
|         old_to_new_root = dict()
 | ||
|         if HEAD in attrs:
 | ||
|             head_col = attrs.index(HEAD)
 | ||
|             for i in range(length):
 | ||
|                 # if the HEAD refers to a token outside this span, find a more appropriate ancestor
 | ||
|                 token = self[i]
 | ||
|                 ancestor_i = token.head.i - self.c.start   # span offset
 | ||
|                 if ancestor_i not in range(length):
 | ||
|                     if DEP in attrs:
 | ||
|                         array[i, attrs.index(DEP)] = dep
 | ||
| 
 | ||
|                     # try finding an ancestor within this span
 | ||
|                     ancestors = token.ancestors
 | ||
|                     for ancestor in ancestors:
 | ||
|                         ancestor_i = ancestor.i - self.c.start
 | ||
|                         if ancestor_i in range(length):
 | ||
|                             array[i, head_col] = ancestor_i - i
 | ||
| 
 | ||
|                 # if there is no appropriate ancestor, define a new artificial root
 | ||
|                 value = array[i, head_col]
 | ||
|                 if (i+value) not in range(length):
 | ||
|                     new_root = old_to_new_root.get(ancestor_i, None)
 | ||
|                     if new_root is not None:
 | ||
|                         # take the same artificial root as a previous token from the same sentence
 | ||
|                         array[i, head_col] = new_root - i
 | ||
|                     else:
 | ||
|                         # set this token as the new artificial root
 | ||
|                         array[i, head_col] = 0
 | ||
|                         old_to_new_root[ancestor_i] = i
 | ||
| 
 | ||
|         return array
 | ||
| 
 | ||
|     def get_lca_matrix(self):
 | ||
|         """Calculates a matrix of Lowest Common Ancestors (LCA) for a given
 | ||
|         `Span`, where LCA[i, j] is the index of the lowest common ancestor among
 | ||
|         the tokens span[i] and span[j]. If they have no common ancestor within
 | ||
|         the span, LCA[i, j] will be -1.
 | ||
| 
 | ||
|         RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
 | ||
|             (n, n), where n = len(self).
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#get_lca_matrix
 | ||
|         """
 | ||
|         return numpy.asarray(_get_lca_matrix(self.doc, self.c.start, self.c.end))
 | ||
| 
 | ||
|     def similarity(self, other):
 | ||
|         """Make a semantic similarity estimate. The default estimate is cosine
 | ||
|         similarity using an average of word vectors.
 | ||
| 
 | ||
|         other (object): The object to compare with. By default, accepts `Doc`,
 | ||
|             `Span`, `Token` and `Lexeme` objects.
 | ||
|         RETURNS (float): A scalar similarity score. Higher is more similar.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#similarity
 | ||
|         """
 | ||
|         if "similarity" in self.doc.user_span_hooks:
 | ||
|             return self.doc.user_span_hooks["similarity"](self, other)
 | ||
|         if len(self) == 1 and hasattr(other, "orth"):
 | ||
|             if self[0].orth == other.orth:
 | ||
|                 return 1.0
 | ||
|         elif isinstance(other, (Doc, Span)) and len(self) == len(other):
 | ||
|             similar = True
 | ||
|             for i in range(len(self)):
 | ||
|                 if self[i].orth != getattr(other[i], "orth", None):
 | ||
|                     similar = False
 | ||
|                     break
 | ||
|             if similar:
 | ||
|                 return 1.0
 | ||
|         if self.vocab.vectors.n_keys == 0:
 | ||
|             warnings.warn(Warnings.W007.format(obj="Span"))
 | ||
|         if self.vector_norm == 0.0 or other.vector_norm == 0.0:
 | ||
|             warnings.warn(Warnings.W008.format(obj="Span"))
 | ||
|             return 0.0
 | ||
|         vector = self.vector
 | ||
|         xp = get_array_module(vector)
 | ||
|         return xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
 | ||
| 
 | ||
|     cpdef np.ndarray to_array(self, object py_attr_ids):
 | ||
|         """Given a list of M attribute IDs, export the tokens to a numpy
 | ||
|         `ndarray` of shape `(N, M)`, where `N` is the length of the document.
 | ||
|         The values will be 32-bit integers.
 | ||
| 
 | ||
|         attr_ids (list[int]): A list of attribute ID ints.
 | ||
|         RETURNS (numpy.ndarray[long, ndim=2]): A feature matrix, with one row
 | ||
|             per word, and one column per attribute indicated in the input
 | ||
|             `attr_ids`.
 | ||
|         """
 | ||
|         cdef int i, j
 | ||
|         cdef attr_id_t feature
 | ||
|         cdef np.ndarray[attr_t, ndim=2] output
 | ||
|         # Make an array from the attributes - otherwise our inner loop is Python
 | ||
|         # dict iteration
 | ||
|         cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids, dtype=numpy.uint64)
 | ||
|         cdef int length = self.end - self.start
 | ||
|         output = numpy.ndarray(shape=(length, len(attr_ids)), dtype=numpy.uint64)
 | ||
|         for i in range(self.start, self.end):
 | ||
|             for j, feature in enumerate(attr_ids):
 | ||
|                 output[i-self.start, j] = get_token_attr(&self.doc.c[i], feature)
 | ||
|         return output
 | ||
| 
 | ||
|     @property
 | ||
|     def vocab(self):
 | ||
|         """RETURNS (Vocab): The Span's Doc's vocab."""
 | ||
|         return self.doc.vocab
 | ||
| 
 | ||
|     @property
 | ||
|     def sent(self):
 | ||
|         """Obtain the sentence that contains this span. If the given span
 | ||
|         crosses sentence boundaries, return only the first sentence
 | ||
|         to which it belongs.
 | ||
| 
 | ||
|         RETURNS (Span): The sentence span that the span is a part of.
 | ||
|         """
 | ||
|         if "sent" in self.doc.user_span_hooks:
 | ||
|             return self.doc.user_span_hooks["sent"](self)
 | ||
|         # Use `sent_start` token attribute to find sentence boundaries
 | ||
|         cdef int n = 0
 | ||
|         if self.doc.has_annotation("SENT_START"):
 | ||
|             # Find start of the sentence
 | ||
|             start = self.start
 | ||
|             while self.doc.c[start].sent_start != 1 and start > 0:
 | ||
|                 start += -1
 | ||
|             # Find end of the sentence - can be within the entity
 | ||
|             end = self.start + 1
 | ||
|             while end < self.doc.length and self.doc.c[end].sent_start != 1:
 | ||
|                 end += 1
 | ||
|                 n += 1
 | ||
|                 if n >= self.doc.length:
 | ||
|                     break
 | ||
|             return self.doc[start:end]
 | ||
|         else:
 | ||
|             raise ValueError(Errors.E030)
 | ||
| 
 | ||
|     @property
 | ||
|     def ents(self):
 | ||
|         """The named entities in the span. Returns a tuple of named entity
 | ||
|         `Span` objects, if the entity recognizer has been applied.
 | ||
| 
 | ||
|         RETURNS (tuple): Entities in the span, one `Span` per entity.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#ents
 | ||
|         """
 | ||
|         cdef Span ent
 | ||
|         ents = []
 | ||
|         for ent in self.doc.ents:
 | ||
|             if ent.c.start >= self.c.start:
 | ||
|                 if ent.c.end <= self.c.end:
 | ||
|                     ents.append(ent)
 | ||
|                 else:
 | ||
|                     break
 | ||
|         return ents
 | ||
| 
 | ||
|     @property
 | ||
|     def has_vector(self):
 | ||
|         """A boolean value indicating whether a word vector is associated with
 | ||
|         the object.
 | ||
| 
 | ||
|         RETURNS (bool): Whether a word vector is associated with the object.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#has_vector
 | ||
|         """
 | ||
|         if "has_vector" in self.doc.user_span_hooks:
 | ||
|             return self.doc.user_span_hooks["has_vector"](self)
 | ||
|         elif self.vocab.vectors.data.size > 0:
 | ||
|             return any(token.has_vector for token in self)
 | ||
|         elif self.doc.tensor.size > 0:
 | ||
|             return True
 | ||
|         else:
 | ||
|             return False
 | ||
| 
 | ||
|     @property
 | ||
|     def vector(self):
 | ||
|         """A real-valued meaning representation. Defaults to an average of the
 | ||
|         token vectors.
 | ||
| 
 | ||
|         RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
 | ||
|             representing the span's semantics.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#vector
 | ||
|         """
 | ||
|         if "vector" in self.doc.user_span_hooks:
 | ||
|             return self.doc.user_span_hooks["vector"](self)
 | ||
|         if self._vector is None:
 | ||
|             self._vector = sum(t.vector for t in self) / len(self)
 | ||
|         return self._vector
 | ||
| 
 | ||
|     @property
 | ||
|     def vector_norm(self):
 | ||
|         """The L2 norm of the span's vector representation.
 | ||
| 
 | ||
|         RETURNS (float): The L2 norm of the vector representation.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#vector_norm
 | ||
|         """
 | ||
|         if "vector_norm" in self.doc.user_span_hooks:
 | ||
|             return self.doc.user_span_hooks["vector"](self)
 | ||
|         vector = self.vector
 | ||
|         xp = get_array_module(vector)
 | ||
|         if self._vector_norm is None:
 | ||
|             total = (vector*vector).sum()
 | ||
|             self._vector_norm = xp.sqrt(total) if total != 0. else 0.
 | ||
|         return self._vector_norm
 | ||
| 
 | ||
|     @property
 | ||
|     def tensor(self):
 | ||
|         """The span's slice of the doc's tensor.
 | ||
| 
 | ||
|         RETURNS (ndarray[ndim=2, dtype='float32']): A 2D numpy or cupy array
 | ||
|             representing the span's semantics.
 | ||
|         """
 | ||
|         if self.doc.tensor is None:
 | ||
|             return None
 | ||
|         return self.doc.tensor[self.start : self.end]
 | ||
| 
 | ||
|     @property
 | ||
|     def sentiment(self):
 | ||
|         """RETURNS (float): A scalar value indicating the positivity or
 | ||
|             negativity of the span.
 | ||
|         """
 | ||
|         if "sentiment" in self.doc.user_span_hooks:
 | ||
|             return self.doc.user_span_hooks["sentiment"](self)
 | ||
|         else:
 | ||
|             return sum([token.sentiment for token in self]) / len(self)
 | ||
| 
 | ||
|     @property
 | ||
|     def text(self):
 | ||
|         """RETURNS (str): The original verbatim text of the span."""
 | ||
|         text = self.text_with_ws
 | ||
|         if len(self) > 0 and self[-1].whitespace_:
 | ||
|             text = text[:-1]
 | ||
|         return text
 | ||
| 
 | ||
|     @property
 | ||
|     def text_with_ws(self):
 | ||
|         """The text content of the span with a trailing whitespace character if
 | ||
|         the last token has one.
 | ||
| 
 | ||
|         RETURNS (str): The text content of the span (with trailing
 | ||
|             whitespace).
 | ||
|         """
 | ||
|         return "".join([t.text_with_ws for t in self])
 | ||
| 
 | ||
| 
 | ||
|     @property
 | ||
|     def noun_chunks(self):
 | ||
|         """Iterate over the base noun phrases in the span. Yields base
 | ||
|         noun-phrase #[code Span] objects, if the language has a noun chunk iterator.
 | ||
|         Raises a NotImplementedError otherwise.
 | ||
| 
 | ||
|         A base noun phrase, or "NP chunk", is a noun
 | ||
|         phrase that does not permit other NPs to be nested within it – so no
 | ||
|         NP-level coordination, no prepositional phrases, and no relative
 | ||
|         clauses.
 | ||
| 
 | ||
|         YIELDS (Span): Noun chunks in the span.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#noun_chunks
 | ||
|         """
 | ||
|         for span in self.doc.noun_chunks:
 | ||
|             if span.start >= self.start and span.end <= self.end:
 | ||
|                 yield span
 | ||
| 
 | ||
|     @property
 | ||
|     def root(self):
 | ||
|         """The token with the shortest path to the root of the
 | ||
|         sentence (or the root itself). If multiple tokens are equally
 | ||
|         high in the tree, the first token is taken.
 | ||
| 
 | ||
|         RETURNS (Token): The root token.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#root
 | ||
|         """
 | ||
|         if "root" in self.doc.user_span_hooks:
 | ||
|             return self.doc.user_span_hooks["root"](self)
 | ||
|         # This should probably be called 'head', and the other one called
 | ||
|         # 'gov'. But we went with 'head' elsewhere, and now we're stuck =/
 | ||
|         cdef int i
 | ||
|         # First, we scan through the Span, and check whether there's a word
 | ||
|         # with head==0, i.e. a sentence root. If so, we can return it. The
 | ||
|         # longer the span, the more likely it contains a sentence root, and
 | ||
|         # in this case we return in linear time.
 | ||
|         for i in range(self.c.start, self.c.end):
 | ||
|             if self.doc.c[i].head == 0:
 | ||
|                 return self.doc[i]
 | ||
|         # If we don't have a sentence root, we do something that's not so
 | ||
|         # algorithmically clever, but I think should be quite fast,
 | ||
|         # especially for short spans.
 | ||
|         # For each word, we count the path length, and arg min this measure.
 | ||
|         # We could use better tree logic to save steps here...But I
 | ||
|         # think this should be okay.
 | ||
|         cdef int current_best = self.doc.length
 | ||
|         cdef int root = -1
 | ||
|         for i in range(self.c.start, self.c.end):
 | ||
|             if self.c.start <= (i+self.doc.c[i].head) < self.c.end:
 | ||
|                 continue
 | ||
|             words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length)
 | ||
|             if words_to_root < current_best:
 | ||
|                 current_best = words_to_root
 | ||
|                 root = i
 | ||
|         if root == -1:
 | ||
|             return self.doc[self.c.start]
 | ||
|         else:
 | ||
|             return self.doc[root]
 | ||
| 
 | ||
|     def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None):
 | ||
|         """Create a `Span` object from the slice `span.text[start : end]`.
 | ||
| 
 | ||
|         start (int): The index of the first character of the span.
 | ||
|         end (int): The index of the first character after the span.
 | ||
|         label (uint64 or string): A label to attach to the Span, e.g. for
 | ||
|             named entities.
 | ||
|         kb_id (uint64 or string):  An ID from a KB to capture the meaning of a named entity.
 | ||
|         vector (ndarray[ndim=1, dtype='float32']): A meaning representation of
 | ||
|             the span.
 | ||
|         RETURNS (Span): The newly constructed object.
 | ||
|         """
 | ||
|         start_idx += self.c.start_char
 | ||
|         end_idx += self.c.start_char
 | ||
|         return self.doc.char_span(start_idx, end_idx, label=label, kb_id=kb_id, vector=vector)
 | ||
| 
 | ||
|     @property
 | ||
|     def conjuncts(self):
 | ||
|         """Tokens that are conjoined to the span's root.
 | ||
| 
 | ||
|         RETURNS (tuple): A tuple of Token objects.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#lefts
 | ||
|         """
 | ||
|         return self.root.conjuncts
 | ||
| 
 | ||
|     @property
 | ||
|     def lefts(self):
 | ||
|         """Tokens that are to the left of the span, whose head is within the
 | ||
|         `Span`.
 | ||
| 
 | ||
|         YIELDS (Token):A left-child of a token of the span.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#lefts
 | ||
|         """
 | ||
|         for token in reversed(self):  # Reverse, so we get tokens in order
 | ||
|             for left in token.lefts:
 | ||
|                 if left.i < self.start:
 | ||
|                     yield left
 | ||
| 
 | ||
|     @property
 | ||
|     def rights(self):
 | ||
|         """Tokens that are to the right of the Span, whose head is within the
 | ||
|         `Span`.
 | ||
| 
 | ||
|         YIELDS (Token): A right-child of a token of the span.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#rights
 | ||
|         """
 | ||
|         for token in self:
 | ||
|             for right in token.rights:
 | ||
|                 if right.i >= self.end:
 | ||
|                     yield right
 | ||
| 
 | ||
|     @property
 | ||
|     def n_lefts(self):
 | ||
|         """The number of tokens that are to the left of the span, whose
 | ||
|         heads are within the span.
 | ||
| 
 | ||
|         RETURNS (int): The number of leftward immediate children of the
 | ||
|             span, in the syntactic dependency parse.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#n_lefts
 | ||
|         """
 | ||
|         return len(list(self.lefts))
 | ||
| 
 | ||
|     @property
 | ||
|     def n_rights(self):
 | ||
|         """The number of tokens that are to the right of the span, whose
 | ||
|         heads are within the span.
 | ||
| 
 | ||
|         RETURNS (int): The number of rightward immediate children of the
 | ||
|             span, in the syntactic dependency parse.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#n_rights
 | ||
|         """
 | ||
|         return len(list(self.rights))
 | ||
| 
 | ||
|     @property
 | ||
|     def subtree(self):
 | ||
|         """Tokens within the span and tokens which descend from them.
 | ||
| 
 | ||
|         YIELDS (Token): A token within the span, or a descendant from it.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/span#subtree
 | ||
|         """
 | ||
|         for word in self.lefts:
 | ||
|             yield from word.subtree
 | ||
|         yield from self
 | ||
|         for word in self.rights:
 | ||
|             yield from word.subtree
 | ||
| 
 | ||
|     property start:
 | ||
|         def __get__(self):
 | ||
|             return self.c.start
 | ||
| 
 | ||
|         def __set__(self, int start):
 | ||
|             if start < 0:
 | ||
|                 raise IndexError("TODO")
 | ||
|             self.c.start = start
 | ||
| 
 | ||
|     property end:
 | ||
|         def __get__(self):
 | ||
|             return self.c.end
 | ||
| 
 | ||
|         def __set__(self, int end):
 | ||
|             if end < 0:
 | ||
|                 raise IndexError("TODO")
 | ||
|             self.c.end = end
 | ||
| 
 | ||
|     property start_char:
 | ||
|         def __get__(self):
 | ||
|             return self.c.start_char
 | ||
| 
 | ||
|         def __set__(self, int start_char):
 | ||
|             if start_char < 0:
 | ||
|                 raise IndexError("TODO")
 | ||
|             self.c.start_char = start_char
 | ||
| 
 | ||
|     property end_char:
 | ||
|         def __get__(self):
 | ||
|             return self.c.end_char
 | ||
| 
 | ||
|         def __set__(self, int end_char):
 | ||
|             if end_char < 0:
 | ||
|                 raise IndexError("TODO")
 | ||
|             self.c.end_char = end_char
 | ||
| 
 | ||
|     property label:
 | ||
|         def __get__(self):
 | ||
|             return self.c.label
 | ||
| 
 | ||
|         def __set__(self, attr_t label):
 | ||
|             self.c.label = label
 | ||
| 
 | ||
|     property kb_id:
 | ||
|         def __get__(self):
 | ||
|             return self.c.kb_id
 | ||
| 
 | ||
|         def __set__(self, attr_t kb_id):
 | ||
|             self.c.kb_id = kb_id
 | ||
| 
 | ||
|     property ent_id:
 | ||
|         """RETURNS (uint64): The entity ID."""
 | ||
|         def __get__(self):
 | ||
|             return self.root.ent_id
 | ||
| 
 | ||
|         def __set__(self, hash_t key):
 | ||
|             raise NotImplementedError(Errors.E200.format(attr="ent_id"))
 | ||
| 
 | ||
|     property ent_id_:
 | ||
|         """RETURNS (str): The (string) entity ID."""
 | ||
|         def __get__(self):
 | ||
|             return self.root.ent_id_
 | ||
| 
 | ||
|         def __set__(self, unicode key):
 | ||
|             raise NotImplementedError(Errors.E200.format(attr="ent_id_"))
 | ||
| 
 | ||
|     @property
 | ||
|     def orth_(self):
 | ||
|         """Verbatim text content (identical to `Span.text`). Exists mostly for
 | ||
|         consistency with other attributes.
 | ||
| 
 | ||
|         RETURNS (str): The span's text."""
 | ||
|         return self.text
 | ||
| 
 | ||
|     @property
 | ||
|     def lemma_(self):
 | ||
|         """RETURNS (str): The span's lemma."""
 | ||
|         return "".join([t.lemma_ + t.whitespace_ for t in self]).strip()
 | ||
| 
 | ||
|     property label_:
 | ||
|         """RETURNS (str): The span's label."""
 | ||
|         def __get__(self):
 | ||
|             return self.doc.vocab.strings[self.label]
 | ||
| 
 | ||
|         def __set__(self, unicode label_):
 | ||
|             self.label = self.doc.vocab.strings.add(label_)
 | ||
| 
 | ||
|     property kb_id_:
 | ||
|         """RETURNS (str): The named entity's KB ID."""
 | ||
|         def __get__(self):
 | ||
|             return self.doc.vocab.strings[self.kb_id]
 | ||
| 
 | ||
|         def __set__(self, unicode kb_id_):
 | ||
|             self.kb_id = self.doc.vocab.strings.add(kb_id_)
 | ||
| 
 | ||
| 
 | ||
| cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
 | ||
|     # Don't allow spaces to be the root, if there are
 | ||
|     # better candidates
 | ||
|     if Lexeme.c_check_flag(token.lex, IS_SPACE) and token.l_kids == 0 and token.r_kids == 0:
 | ||
|         return sent_length-1
 | ||
|     if Lexeme.c_check_flag(token.lex, IS_PUNCT) and token.l_kids == 0 and token.r_kids == 0:
 | ||
|         return sent_length-1
 | ||
|     cdef int n = 0
 | ||
|     while token.head != 0:
 | ||
|         token += token.head
 | ||
|         n += 1
 | ||
|         if n >= sent_length:
 | ||
|             raise RuntimeError(Errors.E039)
 | ||
|     return n
 |