mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
80 lines
2.2 KiB
Python
80 lines
2.2 KiB
Python
# coding: utf-8
|
|
import spacy
|
|
from spacy.kb import KnowledgeBase
|
|
|
|
|
|
def create_kb():
|
|
mykb = KnowledgeBase()
|
|
|
|
print("kb size", len(mykb), mykb.get_size_entities(), mykb.get_size_aliases())
|
|
|
|
# adding entities
|
|
entity_0 = "Q0" # douglas adams
|
|
print(" adding entity", entity_0)
|
|
mykb.add_entity(entity_id=entity_0, prob=0.5)
|
|
|
|
entity_42 = "Q42" # douglas adams
|
|
print(" adding entity", entity_42)
|
|
mykb.add_entity(entity_id=entity_42, prob=0.5)
|
|
|
|
entity_5301561 = "Q5301561"
|
|
print(" adding entity", entity_5301561)
|
|
mykb.add_entity(entity_id=entity_5301561, prob=0.5)
|
|
|
|
print(" adding entity", entity_5301561)
|
|
mykb.add_entity(entity_id=entity_5301561, prob=0.5)
|
|
|
|
print("kb size", len(mykb), mykb.get_size_entities(), mykb.get_size_aliases())
|
|
|
|
# adding aliases
|
|
alias = "douglassss"
|
|
print(" adding alias", alias)
|
|
mykb.add_alias(alias=alias, entities=["Q42", "Q5301561"], probabilities=[0.8, 0.2])
|
|
|
|
print("kb size", len(mykb), mykb.get_size_entities(), mykb.get_size_aliases())
|
|
|
|
print("candidates for", alias)
|
|
candidates = mykb.get_candidates(alias)
|
|
print(" ", candidates)
|
|
|
|
print(" adding alias", alias)
|
|
mykb.add_alias(alias=alias, entities=["Q42"], probabilities=[0.9])
|
|
|
|
print("kb size", len(mykb), mykb.get_size_entities(), mykb.get_size_aliases())
|
|
|
|
alias2 = "johny"
|
|
print(" adding alias2", alias2)
|
|
mykb.add_alias(alias=alias2, entities=["Q0", "Q42"], probabilities=[0.3, 1.1])
|
|
|
|
print("kb size", len(mykb), mykb.get_size_entities(), mykb.get_size_aliases())
|
|
|
|
print("candidates for", alias)
|
|
candidates = mykb.get_candidates(alias)
|
|
print(" ", candidates)
|
|
|
|
|
|
def add_el():
|
|
nlp = spacy.load('en_core_web_sm')
|
|
print("pipes before:", nlp.pipe_names)
|
|
|
|
el_pipe = nlp.create_pipe(name='el')
|
|
nlp.add_pipe(el_pipe, last=True)
|
|
|
|
print("pipes after:", nlp.pipe_names)
|
|
print()
|
|
|
|
text = "The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, reminds us to always bring our towel."
|
|
doc = nlp(text)
|
|
|
|
for token in doc:
|
|
print("token", token.text, token.ent_type_, token.ent_kb_id_)
|
|
|
|
print()
|
|
for ent in doc.ents:
|
|
print("ent", ent.text, ent.label_, ent.kb_id_)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# add_el()
|
|
create_kb()
|