mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			132 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| import numpy
 | |
| from spacy.tokens import Doc
 | |
| from spacy.displacy import render
 | |
| from spacy.gold import iob_to_biluo
 | |
| from spacy.lang.it import Italian
 | |
| from spacy.lang.en import English
 | |
| 
 | |
| from ..util import add_vecs_to_vocab, get_doc
 | |
| 
 | |
| 
 | |
| @pytest.mark.xfail
 | |
| def test_issue2070():
 | |
|     """Test that checks that a dot followed by a quote is handled
 | |
|     appropriately.
 | |
|     """
 | |
|     # Problem: The dot is now properly split off, but the prefix/suffix rules
 | |
|     # are not applied again afterwards. This means that the quote will still be
 | |
|     # attached to the remaining token.
 | |
|     nlp = English()
 | |
|     doc = nlp('First sentence."A quoted sentence" he said ...')
 | |
|     assert len(doc) == 11
 | |
| 
 | |
| 
 | |
| def test_issue2179():
 | |
|     """Test that spurious 'extra_labels' aren't created when initializing NER."""
 | |
|     nlp = Italian()
 | |
|     ner = nlp.create_pipe("ner")
 | |
|     ner.add_label("CITIZENSHIP")
 | |
|     nlp.add_pipe(ner)
 | |
|     nlp.begin_training()
 | |
|     nlp2 = Italian()
 | |
|     nlp2.add_pipe(nlp2.create_pipe("ner"))
 | |
|     nlp2.from_bytes(nlp.to_bytes())
 | |
|     assert "extra_labels" not in nlp2.get_pipe("ner").cfg
 | |
|     assert nlp2.get_pipe("ner").labels == ("CITIZENSHIP",)
 | |
| 
 | |
| 
 | |
| def test_issue2203(en_vocab):
 | |
|     """Test that lemmas are set correctly in doc.from_array."""
 | |
|     words = ["I", "'ll", "survive"]
 | |
|     tags = ["PRP", "MD", "VB"]
 | |
|     lemmas = ["-PRON-", "will", "survive"]
 | |
|     tag_ids = [en_vocab.strings.add(tag) for tag in tags]
 | |
|     lemma_ids = [en_vocab.strings.add(lemma) for lemma in lemmas]
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     # Work around lemma corrpution problem and set lemmas after tags
 | |
|     doc.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
 | |
|     doc.from_array("LEMMA", numpy.array(lemma_ids, dtype="uint64"))
 | |
|     assert [t.tag_ for t in doc] == tags
 | |
|     assert [t.lemma_ for t in doc] == lemmas
 | |
|     # We need to serialize both tag and lemma, since this is what causes the bug
 | |
|     doc_array = doc.to_array(["TAG", "LEMMA"])
 | |
|     new_doc = Doc(doc.vocab, words=words).from_array(["TAG", "LEMMA"], doc_array)
 | |
|     assert [t.tag_ for t in new_doc] == tags
 | |
|     assert [t.lemma_ for t in new_doc] == lemmas
 | |
| 
 | |
| 
 | |
| def test_issue2219(en_vocab):
 | |
|     vectors = [("a", [1, 2, 3]), ("letter", [4, 5, 6])]
 | |
|     add_vecs_to_vocab(en_vocab, vectors)
 | |
|     [(word1, vec1), (word2, vec2)] = vectors
 | |
|     doc = Doc(en_vocab, words=[word1, word2])
 | |
|     assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
 | |
| 
 | |
| 
 | |
| def test_issue2361(de_tokenizer):
 | |
|     chars = ("<", ">", "&", """)
 | |
|     doc = de_tokenizer('< > & " ')
 | |
|     doc.is_parsed = True
 | |
|     doc.is_tagged = True
 | |
|     html = render(doc)
 | |
|     for char in chars:
 | |
|         assert char in html
 | |
| 
 | |
| 
 | |
| def test_issue2385():
 | |
|     """Test that IOB tags are correctly converted to BILUO tags."""
 | |
|     # fix bug in labels with a 'b' character
 | |
|     tags1 = ("B-BRAWLER", "I-BRAWLER", "I-BRAWLER")
 | |
|     assert iob_to_biluo(tags1) == ["B-BRAWLER", "I-BRAWLER", "L-BRAWLER"]
 | |
|     # maintain support for iob1 format
 | |
|     tags2 = ("I-ORG", "I-ORG", "B-ORG")
 | |
|     assert iob_to_biluo(tags2) == ["B-ORG", "L-ORG", "U-ORG"]
 | |
|     # maintain support for iob2 format
 | |
|     tags3 = ("B-PERSON", "I-PERSON", "B-PERSON")
 | |
|     assert iob_to_biluo(tags3) == ["B-PERSON", "L-PERSON", "U-PERSON"]
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "tags",
 | |
|     [
 | |
|         ("B-ORG", "L-ORG"),
 | |
|         ("B-PERSON", "I-PERSON", "L-PERSON"),
 | |
|         ("U-BRAWLER", "U-BRAWLER"),
 | |
|     ],
 | |
| )
 | |
| def test_issue2385_biluo(tags):
 | |
|     """Test that BILUO-compatible tags aren't modified."""
 | |
|     assert iob_to_biluo(tags) == list(tags)
 | |
| 
 | |
| 
 | |
| def test_issue2396(en_vocab):
 | |
|     words = ["She", "created", "a", "test", "for", "spacy"]
 | |
|     heads = [1, 0, 1, -2, -1, -1]
 | |
|     matrix = numpy.array(
 | |
|         [
 | |
|             [0, 1, 1, 1, 1, 1],
 | |
|             [1, 1, 1, 1, 1, 1],
 | |
|             [1, 1, 2, 3, 3, 3],
 | |
|             [1, 1, 3, 3, 3, 3],
 | |
|             [1, 1, 3, 3, 4, 4],
 | |
|             [1, 1, 3, 3, 4, 5],
 | |
|         ],
 | |
|         dtype=numpy.int32,
 | |
|     )
 | |
|     doc = get_doc(en_vocab, words=words, heads=heads)
 | |
|     span = doc[:]
 | |
|     assert (doc.get_lca_matrix() == matrix).all()
 | |
|     assert (span.get_lca_matrix() == matrix).all()
 | |
| 
 | |
| 
 | |
| def test_issue2482():
 | |
|     """Test we can serialize and deserialize a blank NER or parser model."""
 | |
|     nlp = Italian()
 | |
|     nlp.add_pipe(nlp.create_pipe("ner"))
 | |
|     b = nlp.to_bytes()
 | |
|     Italian().from_bytes(b)
 |