mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
43b960c01b
* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
159 lines
4.3 KiB
Python
159 lines
4.3 KiB
Python
import itertools
|
|
import pytest
|
|
from spacy.language import Language
|
|
from spacy.tokens import Doc, Span
|
|
from spacy.vocab import Vocab
|
|
from spacy.lang.en import English
|
|
|
|
from .util import add_vecs_to_vocab, assert_docs_equal
|
|
from ..gold import Example
|
|
|
|
|
|
@pytest.fixture
|
|
def nlp():
|
|
nlp = Language(Vocab())
|
|
textcat = nlp.add_pipe("textcat")
|
|
for label in ("POSITIVE", "NEGATIVE"):
|
|
textcat.add_label(label)
|
|
nlp.begin_training()
|
|
return nlp
|
|
|
|
|
|
def test_language_update(nlp):
|
|
text = "hello world"
|
|
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
|
|
wrongkeyannots = {"LABEL": True}
|
|
doc = Doc(nlp.vocab, words=text.split(" "))
|
|
example = Example.from_dict(doc, annots)
|
|
nlp.update([example])
|
|
|
|
# Not allowed to call with just one Example
|
|
with pytest.raises(TypeError):
|
|
nlp.update(example)
|
|
|
|
# Update with text and dict: not supported anymore since v.3
|
|
with pytest.raises(TypeError):
|
|
nlp.update((text, annots))
|
|
# Update with doc object and dict
|
|
with pytest.raises(TypeError):
|
|
nlp.update((doc, annots))
|
|
|
|
# Create examples badly
|
|
with pytest.raises(ValueError):
|
|
example = Example.from_dict(doc, None)
|
|
with pytest.raises(KeyError):
|
|
example = Example.from_dict(doc, wrongkeyannots)
|
|
|
|
|
|
def test_language_evaluate(nlp):
|
|
text = "hello world"
|
|
annots = {"doc_annotation": {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}}
|
|
doc = Doc(nlp.vocab, words=text.split(" "))
|
|
example = Example.from_dict(doc, annots)
|
|
nlp.evaluate([example])
|
|
|
|
# Not allowed to call with just one Example
|
|
with pytest.raises(TypeError):
|
|
nlp.evaluate(example)
|
|
|
|
# Evaluate with text and dict: not supported anymore since v.3
|
|
with pytest.raises(TypeError):
|
|
nlp.evaluate([(text, annots)])
|
|
# Evaluate with doc object and dict
|
|
with pytest.raises(TypeError):
|
|
nlp.evaluate([(doc, annots)])
|
|
with pytest.raises(TypeError):
|
|
nlp.evaluate([text, annots])
|
|
|
|
|
|
def test_evaluate_no_pipe(nlp):
|
|
"""Test that docs are processed correctly within Language.pipe if the
|
|
component doesn't expose a .pipe method."""
|
|
|
|
@Language.component("test_evaluate_no_pipe")
|
|
def pipe(doc):
|
|
return doc
|
|
|
|
text = "hello world"
|
|
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
|
|
nlp = Language(Vocab())
|
|
doc = nlp(text)
|
|
nlp.add_pipe("test_evaluate_no_pipe")
|
|
nlp.evaluate([Example.from_dict(doc, annots)])
|
|
|
|
|
|
@Language.component("test_language_vector_modification_pipe")
|
|
def vector_modification_pipe(doc):
|
|
doc.vector += 1
|
|
return doc
|
|
|
|
|
|
@Language.component("test_language_userdata_pipe")
|
|
def userdata_pipe(doc):
|
|
doc.user_data["foo"] = "bar"
|
|
return doc
|
|
|
|
|
|
@Language.component("test_language_ner_pipe")
|
|
def ner_pipe(doc):
|
|
span = Span(doc, 0, 1, label="FIRST")
|
|
doc.ents += (span,)
|
|
return doc
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_vectors():
|
|
return [
|
|
("spacy", [-0.1, -0.2, -0.3]),
|
|
("world", [-0.2, -0.3, -0.4]),
|
|
("pipe", [0.7, 0.8, 0.9]),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def nlp2(nlp, sample_vectors):
|
|
add_vecs_to_vocab(nlp.vocab, sample_vectors)
|
|
nlp.add_pipe("test_language_vector_modification_pipe")
|
|
nlp.add_pipe("test_language_ner_pipe")
|
|
nlp.add_pipe("test_language_userdata_pipe")
|
|
return nlp
|
|
|
|
|
|
@pytest.fixture
|
|
def texts():
|
|
data = [
|
|
"Hello world.",
|
|
"This is spacy.",
|
|
"You can use multiprocessing with pipe method.",
|
|
"Please try!",
|
|
]
|
|
return data
|
|
|
|
|
|
@pytest.mark.parametrize("n_process", [1, 2])
|
|
def test_language_pipe(nlp2, n_process, texts):
|
|
texts = texts * 10
|
|
expecteds = [nlp2(text) for text in texts]
|
|
docs = nlp2.pipe(texts, n_process=n_process, batch_size=2)
|
|
|
|
for doc, expected_doc in zip(docs, expecteds):
|
|
assert_docs_equal(doc, expected_doc)
|
|
|
|
|
|
@pytest.mark.parametrize("n_process", [1, 2])
|
|
def test_language_pipe_stream(nlp2, n_process, texts):
|
|
# check if nlp.pipe can handle infinite length iterator properly.
|
|
stream_texts = itertools.cycle(texts)
|
|
texts0, texts1 = itertools.tee(stream_texts)
|
|
expecteds = (nlp2(text) for text in texts0)
|
|
docs = nlp2.pipe(texts1, n_process=n_process, batch_size=2)
|
|
|
|
n_fetch = 20
|
|
for doc, expected_doc in itertools.islice(zip(docs, expecteds), n_fetch):
|
|
assert_docs_equal(doc, expected_doc)
|
|
|
|
|
|
def test_language_from_config():
|
|
English.from_config()
|
|
# TODO: add more tests
|