mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 10:26:35 +03:00
307 lines
10 KiB
Cython
307 lines
10 KiB
Cython
# cython: profile=True
|
|
from __future__ import unicode_literals
|
|
|
|
from os import path
|
|
|
|
from .typedefs cimport attr_t
|
|
from .typedefs cimport hash_t
|
|
from .attrs cimport attr_id_t
|
|
from .structs cimport TokenC, LexemeC
|
|
from .lexeme cimport Lexeme
|
|
|
|
from cymem.cymem cimport Pool
|
|
from preshed.maps cimport PreshMap
|
|
from libcpp.vector cimport vector
|
|
from murmurhash.mrmr cimport hash64
|
|
|
|
from .attrs cimport LENGTH, ENT_TYPE, ORTH, NORM, LEMMA, LOWER, SHAPE
|
|
from .attrs cimport FLAG13, FLAG14, FLAG15, FLAG16, FLAG17, FLAG18, FLAG19, FLAG20, FLAG21, FLAG22, FLAG23, FLAG24, FLAG25
|
|
from .tokens.doc cimport get_token_attr
|
|
from .tokens.doc cimport Doc
|
|
from .vocab cimport Vocab
|
|
|
|
from libcpp.vector cimport vector
|
|
|
|
from .attrs import FLAG61 as U_ENT
|
|
|
|
from .attrs import FLAG60 as B2_ENT
|
|
from .attrs import FLAG59 as B3_ENT
|
|
from .attrs import FLAG58 as B4_ENT
|
|
from .attrs import FLAG57 as B5_ENT
|
|
from .attrs import FLAG56 as B6_ENT
|
|
from .attrs import FLAG55 as B7_ENT
|
|
from .attrs import FLAG54 as B8_ENT
|
|
from .attrs import FLAG53 as B9_ENT
|
|
from .attrs import FLAG52 as B10_ENT
|
|
|
|
from .attrs import FLAG51 as I3_ENT
|
|
from .attrs import FLAG50 as I4_ENT
|
|
from .attrs import FLAG49 as I5_ENT
|
|
from .attrs import FLAG48 as I6_ENT
|
|
from .attrs import FLAG47 as I7_ENT
|
|
from .attrs import FLAG46 as I8_ENT
|
|
from .attrs import FLAG45 as I9_ENT
|
|
from .attrs import FLAG44 as I10_ENT
|
|
|
|
from .attrs import FLAG43 as L2_ENT
|
|
from .attrs import FLAG42 as L3_ENT
|
|
from .attrs import FLAG41 as L4_ENT
|
|
from .attrs import FLAG40 as L5_ENT
|
|
from .attrs import FLAG39 as L6_ENT
|
|
from .attrs import FLAG38 as L7_ENT
|
|
from .attrs import FLAG37 as L8_ENT
|
|
from .attrs import FLAG36 as L9_ENT
|
|
from .attrs import FLAG35 as L10_ENT
|
|
|
|
|
|
try:
|
|
import ujson as json
|
|
except ImportError:
|
|
import json
|
|
|
|
|
|
cdef struct AttrValue:
|
|
attr_id_t attr
|
|
attr_t value
|
|
|
|
|
|
cdef struct Pattern:
|
|
AttrValue* spec
|
|
int length
|
|
|
|
|
|
cdef Pattern* init_pattern(Pool mem, object token_specs, attr_t entity_type) except NULL:
|
|
pattern = <Pattern*>mem.alloc(len(token_specs) + 1, sizeof(Pattern))
|
|
cdef int i
|
|
for i, spec in enumerate(token_specs):
|
|
pattern[i].spec = <AttrValue*>mem.alloc(len(spec), sizeof(AttrValue))
|
|
pattern[i].length = len(spec)
|
|
for j, (attr, value) in enumerate(spec):
|
|
pattern[i].spec[j].attr = attr
|
|
pattern[i].spec[j].value = value
|
|
i = len(token_specs)
|
|
pattern[i].spec = <AttrValue*>mem.alloc(2, sizeof(AttrValue))
|
|
pattern[i].spec[0].attr = ENT_TYPE
|
|
pattern[i].spec[0].value = entity_type
|
|
pattern[i].spec[1].attr = LENGTH
|
|
pattern[i].spec[1].value = len(token_specs)
|
|
pattern[i].length = 0
|
|
return pattern
|
|
|
|
|
|
cdef int match(const Pattern* pattern, const TokenC* token) except -1:
|
|
cdef int i
|
|
for i in range(pattern.length):
|
|
if get_token_attr(token, pattern.spec[i].attr) != pattern.spec[i].value:
|
|
return False
|
|
return True
|
|
|
|
|
|
cdef int is_final(const Pattern* pattern) except -1:
|
|
return (pattern + 1).length == 0
|
|
|
|
|
|
cdef object get_entity(const Pattern* pattern, const TokenC* tokens, int i):
|
|
pattern += 1
|
|
i += 1
|
|
return (pattern.spec[0].value, i - pattern.spec[1].value, i)
|
|
|
|
|
|
def _convert_strings(token_specs, string_store):
|
|
converted = []
|
|
for spec in token_specs:
|
|
converted.append([])
|
|
for attr, value in spec.items():
|
|
if isinstance(attr, basestring):
|
|
attr = map_attr_name(attr)
|
|
if isinstance(value, basestring):
|
|
value = string_store[value]
|
|
if isinstance(value, bool):
|
|
value = int(value)
|
|
converted[-1].append((attr, value))
|
|
return converted
|
|
|
|
|
|
def get_bilou(length):
|
|
if length == 1:
|
|
return [U_ENT]
|
|
elif length == 2:
|
|
return [B2_ENT, L2_ENT]
|
|
elif length == 3:
|
|
return [B3_ENT, I3_ENT, L3_ENT]
|
|
elif length == 4:
|
|
return [B4_ENT, I4_ENT, I4_ENT, L4_ENT]
|
|
elif length == 5:
|
|
return [B5_ENT, I5_ENT, I5_ENT, I5_ENT, L5_ENT]
|
|
elif length == 6:
|
|
return [B6_ENT, I6_ENT, I6_ENT, I6_ENT, I6_ENT, L6_ENT]
|
|
elif length == 7:
|
|
return [B7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, L7_ENT]
|
|
elif length == 8:
|
|
return [B8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, L8_ENT]
|
|
elif length == 9:
|
|
return [B9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, L9_ENT]
|
|
elif length == 10:
|
|
return [B10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT,
|
|
I10_ENT, I10_ENT, L10_ENT]
|
|
else:
|
|
raise ValueError("Max length currently 10 for phrase matching")
|
|
|
|
|
|
def map_attr_name(attr):
|
|
attr = attr.upper()
|
|
if attr == 'ORTH':
|
|
return ORTH
|
|
elif attr == 'LEMMA':
|
|
return LEMMA
|
|
elif attr == 'LOWER':
|
|
return LOWER
|
|
elif attr == 'SHAPE':
|
|
return SHAPE
|
|
elif attr == 'NORM':
|
|
return NORM
|
|
else:
|
|
raise Exception("TODO: Finish supporting attr mapping %s" % attr)
|
|
|
|
|
|
cdef class Matcher:
|
|
cdef Pool mem
|
|
cdef vector[Pattern*] patterns
|
|
cdef readonly Vocab vocab
|
|
|
|
def __init__(self, vocab, patterns):
|
|
self.vocab = vocab
|
|
self.mem = Pool()
|
|
self.vocab = vocab
|
|
for entity_key, (etype, attrs, specs) in sorted(patterns.items()):
|
|
self.add(entity_key, etype, attrs, specs)
|
|
|
|
@classmethod
|
|
def from_dir(cls, data_dir, Vocab vocab):
|
|
patterns_loc = path.join(data_dir, 'vocab', 'gazetteer.json')
|
|
if path.exists(patterns_loc):
|
|
patterns_data = open(patterns_loc).read()
|
|
patterns = json.loads(patterns_data)
|
|
return cls(vocab, patterns)
|
|
else:
|
|
return cls(vocab, {})
|
|
|
|
property n_patterns:
|
|
def __get__(self): return self.patterns.size()
|
|
|
|
def add(self, entity_key, etype, attrs, specs):
|
|
if isinstance(entity_key, basestring):
|
|
entity_key = self.vocab.strings[entity_key]
|
|
if isinstance(etype, basestring):
|
|
etype = self.vocab.strings[etype]
|
|
elif etype is None:
|
|
etype = -1
|
|
# TODO: Do something more clever about multiple patterns for single
|
|
# entity
|
|
for spec in specs:
|
|
spec = _convert_strings(spec, self.vocab.strings)
|
|
self.patterns.push_back(init_pattern(self.mem, spec, etype))
|
|
|
|
def __call__(self, Doc doc, acceptor=None):
|
|
cdef vector[Pattern*] partials
|
|
cdef int n_partials = 0
|
|
cdef int q = 0
|
|
cdef int i, token_i
|
|
cdef const TokenC* token
|
|
cdef Pattern* state
|
|
matches = []
|
|
for token_i in range(doc.length):
|
|
token = &doc.data[token_i]
|
|
q = 0
|
|
# Go over the open matches, extending or finalizing if able. Otherwise,
|
|
# we over-write them (q doesn't advance)
|
|
for i in range(partials.size()):
|
|
state = partials.at(i)
|
|
if match(state, token):
|
|
if is_final(state):
|
|
label, start, end = get_entity(state, token, token_i)
|
|
if acceptor is None or acceptor(doc, label, start, end):
|
|
matches.append((label, start, end))
|
|
else:
|
|
partials[q] = state + 1
|
|
q += 1
|
|
partials.resize(q)
|
|
# Check whether we open any new patterns on this token
|
|
for i in range(self.n_patterns):
|
|
state = self.patterns[i]
|
|
if match(state, token):
|
|
if is_final(state):
|
|
label, start, end = get_entity(state, token, token_i)
|
|
if acceptor is None or acceptor(doc, label, start, end):
|
|
matches.append((label, start, end))
|
|
else:
|
|
partials.push_back(state + 1)
|
|
doc.ents = [(e.label, e.start, e.end) for e in doc.ents] + matches
|
|
return matches
|
|
|
|
|
|
cdef class PhraseMatcher:
|
|
cdef Pool mem
|
|
cdef Vocab vocab
|
|
cdef Matcher matcher
|
|
cdef PreshMap phrase_ids
|
|
|
|
cdef int max_length
|
|
cdef attr_t* _phrase_key
|
|
|
|
def __init__(self, Vocab vocab, phrases, max_length=10):
|
|
self.mem = Pool()
|
|
self._phrase_key = <attr_t*>self.mem.alloc(max_length, sizeof(attr_t))
|
|
self.max_length = max_length
|
|
self.vocab = vocab
|
|
self.matcher = Matcher(self.vocab, {})
|
|
self.phrase_ids = PreshMap()
|
|
for phrase in phrases:
|
|
if len(phrase) < max_length:
|
|
self.add(phrase)
|
|
|
|
abstract_patterns = []
|
|
for length in range(1, max_length):
|
|
abstract_patterns.append([{tag: True} for tag in get_bilou(length)])
|
|
self.matcher.add('Candidate', 'MWE', {}, abstract_patterns)
|
|
|
|
def add(self, Doc tokens):
|
|
cdef int length = tokens.length
|
|
assert length < self.max_length
|
|
tags = get_bilou(length)
|
|
assert len(tags) == length, length
|
|
|
|
cdef int i
|
|
for i in range(self.max_length):
|
|
self._phrase_key[i] = 0
|
|
for i, tag in enumerate(tags):
|
|
lexeme = self.vocab[tokens.data[i].lex.orth]
|
|
lexeme.set_flag(tag, True)
|
|
self._phrase_key[i] = lexeme.orth
|
|
cdef hash_t key = hash64(self._phrase_key, self.max_length * sizeof(attr_t), 0)
|
|
self.phrase_ids[key] = True
|
|
|
|
def __call__(self, Doc doc):
|
|
matches = []
|
|
for label, start, end in self.matcher(doc, acceptor=self.accept_match):
|
|
cand = doc[start : end]
|
|
start = cand[0].idx
|
|
end = cand[-1].idx + len(cand[-1])
|
|
matches.append((start, end, cand.root.tag_, cand.text, 'MWE'))
|
|
for match in matches:
|
|
doc.merge(*match)
|
|
return matches
|
|
|
|
def accept_match(self, Doc doc, int label, int start, int end):
|
|
assert (end - start) < self.max_length
|
|
cdef int i, j
|
|
for i in range(self.max_length):
|
|
self._phrase_key[i] = 0
|
|
for i, j in enumerate(range(start, end)):
|
|
self._phrase_key[i] = doc.data[j].lex.orth
|
|
cdef hash_t key = hash64(self._phrase_key, self.max_length * sizeof(attr_t), 0)
|
|
if self.phrase_ids.get(key):
|
|
return True
|
|
else:
|
|
return False
|