spaCy/tests/website/test_api.py
2015-10-09 11:08:12 +02:00

174 lines
4.7 KiB
Python

from __future__ import unicode_literals
import pytest
@pytest.mark.xfail
def test_example_war_and_peace(nlp):
# from spacy.en import English
from spacy._doc_examples import download_war_and_peace
unprocessed_unicode = download_war_and_peace()
# nlp = English()
# TODO: ImportError: No module named _doc_examples
doc = nlp(unprocessed_unicode)
def test_main_entry_point(nlp):
# from spacy.en import English
# nlp = English()
doc = nlp('Some text.') # Applies tagger, parser, entity
doc = nlp('Some text.', parse=False) # Applies tagger and entity, not parser
doc = nlp('Some text.', entity=False) # Applies tagger and parser, not entity
doc = nlp('Some text.', tag=False) # Does not apply tagger, entity or parser
doc = nlp('') # Zero-length tokens, not an error
# doc = nlp(b'Some text') <-- Error: need unicode
doc = nlp(b'Some text'.decode('utf8')) # Encode to unicode first.
@pytest.mark.models
def test_sentence_spans(nlp):
# from spacy.en import English
# nlp = English()
doc = nlp("This is a sentence. Here's another...")
assert [s.root.orth_ for s in doc.sents] == ["is", "'s"]
@pytest.mark.models
def test_entity_spans(nlp):
# from spacy.en import English
# nlp = English()
tokens = nlp('Mr. Best flew to New York on Saturday morning.')
ents = list(tokens.ents)
assert ents[0].label == 28061
assert ents[0].label_ == 'PERSON'
assert ents[0].orth_ == 'Best'
assert ents[0].string == ents[0].string
@pytest.mark.models
def test_noun_chunk_spans(nlp):
# from spacy.en import English
# nlp = English()
doc = nlp('The sentence in this example has three noun chunks.')
for chunk in doc.noun_chunks:
print(chunk.label, chunk.orth_, '<--', chunk.root.head.orth_)
# NP The sentence <-- has
# NP this example <-- in
# NP three noun chunks <-- has
@pytest.mark.models
def test_count_by(nlp):
# from spacy.en import English, attrs
# nlp = English()
import numpy
from spacy import attrs
tokens = nlp('apple apple orange banana')
assert tokens.count_by(attrs.ORTH) == {2529: 2, 4117: 1, 6650: 1}
assert repr(tokens.to_array([attrs.ORTH])) == repr(numpy.array([[2529],
[2529],
[4117],
[6650]], dtype=numpy.int32))
@pytest.mark.models
def test_read_bytes(nlp):
from spacy.tokens.doc import Doc
loc = '/tmp/test_serialize.bin'
with open(loc, 'wb') as file_:
file_.write(nlp(u'This is a document.').to_bytes())
file_.write(nlp(u'This is another.').to_bytes())
docs = []
with open(loc, 'rb') as file_:
for byte_string in Doc.read_bytes(file_):
docs.append(Doc(nlp.vocab).from_bytes(byte_string))
assert len(docs) == 2
def test_token_span(doc):
span = doc[4:6]
token = span[0]
assert token.i == 4
@pytest.mark.models
def test_example_i_like_new_york1(nlp):
toks = nlp('I like New York in Autumn.')
@pytest.fixture
def toks(nlp):
return nlp('I like New York in Autumn.')
def test_example_i_like_new_york2(toks):
i, like, new, york, in_, autumn, dot = range(len(toks))
@pytest.fixture
def tok(toks, tok):
i, like, new, york, in_, autumn, dot = range(len(toks))
return locals()[tok]
@pytest.fixture
def new(toks):
return tok(toks, "new")
@pytest.fixture
def york(toks):
return tok(toks, "york")
@pytest.fixture
def autumn(toks):
return tok(toks, "autumn")
@pytest.fixture
def dot(toks):
return tok(toks, "dot")
@pytest.mark.models
def test_example_i_like_new_york3(toks, new, york):
assert toks[new].head.orth_ == 'York'
assert toks[york].head.orth_ == 'like'
@pytest.mark.models
def test_example_i_like_new_york4(toks, new, york):
new_york = toks[new:york+1]
assert new_york.root.orth_ == 'York'
@pytest.mark.models
def test_example_i_like_new_york5(toks, autumn, dot):
assert toks[autumn].head.orth_ == 'in'
assert toks[dot].head.orth_ == 'like'
autumn_dot = toks[autumn:]
assert autumn_dot.root.orth_ == 'Autumn'
@pytest.mark.models
def test_navigating_the_parse_tree_lefts(doc):
# TODO: where does the span object come from?
span = doc[:2]
lefts = [span.doc[i] for i in range(0, span.start)
if span.doc[i].head in span]
@pytest.mark.models
def test_navigating_the_parse_tree_rights(doc):
span = doc[:2]
rights = [span.doc[i] for i in range(span.end, len(span.doc))
if span.doc[i].head in span]
def test_string_store(doc):
string_store = doc.vocab.strings
for i, string in enumerate(string_store):
assert i == string_store[string]