mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			89 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from thinc.api import Adam
 | |
| 
 | |
| from spacy import registry
 | |
| from spacy.attrs import NORM
 | |
| from spacy.pipeline import DependencyParser
 | |
| from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
 | |
| from spacy.tokens import Doc
 | |
| from spacy.training import Example
 | |
| from spacy.vocab import Vocab
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab(lex_attr_getters={NORM: lambda s: s})
 | |
| 
 | |
| 
 | |
| def _parser_example(parser):
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]}
 | |
|     return Example.from_dict(doc, gold)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def parser(vocab):
 | |
|     vocab.strings.add("ROOT")
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     parser = DependencyParser(vocab, model)
 | |
|     parser.cfg["token_vector_width"] = 4
 | |
|     parser.cfg["hidden_width"] = 32
 | |
|     # parser.add_label('right')
 | |
|     parser.add_label("left")
 | |
|     parser.initialize(lambda: [_parser_example(parser)])
 | |
|     sgd = Adam(0.001)
 | |
| 
 | |
|     for i in range(10):
 | |
|         losses = {}
 | |
|         doc = Doc(vocab, words=["a", "b", "c", "d"])
 | |
|         example = Example.from_dict(
 | |
|             doc, {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]}
 | |
|         )
 | |
|         parser.update([example], sgd=sgd, losses=losses)
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| def test_no_sentences(parser):
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     doc = parser(doc)
 | |
|     assert len(list(doc.sents)) >= 1
 | |
| 
 | |
| 
 | |
| def test_sents_1(parser):
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     doc[2].sent_start = True
 | |
|     doc = parser(doc)
 | |
|     assert len(list(doc.sents)) >= 2
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     doc[1].sent_start = False
 | |
|     doc[2].sent_start = True
 | |
|     doc[3].sent_start = False
 | |
|     doc = parser(doc)
 | |
|     assert len(list(doc.sents)) == 2
 | |
| 
 | |
| 
 | |
| def test_sents_1_2(parser):
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     doc[1].sent_start = True
 | |
|     doc[2].sent_start = True
 | |
|     doc = parser(doc)
 | |
|     assert len(list(doc.sents)) >= 3
 | |
| 
 | |
| 
 | |
| def test_sents_1_3(parser):
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     doc[0].is_sent_start = True
 | |
|     doc[1].is_sent_start = True
 | |
|     doc[2].is_sent_start = None
 | |
|     doc[3].is_sent_start = True
 | |
|     doc = parser(doc)
 | |
|     assert len(list(doc.sents)) >= 3
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     doc[0].is_sent_start = True
 | |
|     doc[1].is_sent_start = True
 | |
|     doc[2].is_sent_start = False
 | |
|     doc[3].is_sent_start = True
 | |
|     doc = parser(doc)
 | |
|     assert len(list(doc.sents)) == 3
 |