mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	This script's data needs are not intuitive. I have added a note explaining that (a) it expects pos/neg polarity data, (b) the structure of the data dir (train/test), and (c) a standard resource for such polarity data.
		
			
				
	
	
		
			282 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""This script expects something like a binary sentiment data set, such as
 | 
						|
 that available here: `http://www.cs.cornell.edu/people/pabo/movie-review-data/`
 | 
						|
 | 
						|
It expects a directory structure like: `data_dir/train/{pos|neg}`
 | 
						|
 and `data_dir/test/{pos|neg}`. Put (say) 90% of the files in the former
 | 
						|
 and the remainder in the latter.
 | 
						|
"""
 | 
						|
 | 
						|
from __future__ import unicode_literals
 | 
						|
from __future__ import print_function
 | 
						|
from __future__ import division
 | 
						|
 | 
						|
from collections import defaultdict
 | 
						|
from pathlib import Path
 | 
						|
import numpy
 | 
						|
import plac
 | 
						|
 | 
						|
import spacy.en
 | 
						|
 | 
						|
 | 
						|
def read_data(nlp, data_dir):
 | 
						|
    for subdir, label in (('pos', 1), ('neg', 0)):
 | 
						|
        for filename in (data_dir / subdir).iterdir():
 | 
						|
            text = filename.open().read()
 | 
						|
            doc = nlp(text)
 | 
						|
            if len(doc) >= 1:
 | 
						|
                yield doc, label
 | 
						|
 | 
						|
 | 
						|
def partition(examples, split_size):
 | 
						|
    examples = list(examples)
 | 
						|
    numpy.random.shuffle(examples)
 | 
						|
    n_docs = len(examples)
 | 
						|
    split = int(n_docs * split_size)
 | 
						|
    return examples[:split], examples[split:]
 | 
						|
 | 
						|
 | 
						|
def minibatch(data, bs=24):
 | 
						|
    for i in range(0, len(data), bs):
 | 
						|
        yield data[i:i+bs]
 | 
						|
 | 
						|
 | 
						|
class Extractor(object):
 | 
						|
    def __init__(self, nlp, vector_length, dropout=0.3):
 | 
						|
        self.nlp = nlp
 | 
						|
        self.dropout = dropout
 | 
						|
        self.vector = numpy.zeros((vector_length, ))
 | 
						|
 | 
						|
    def doc2bow(self, doc, dropout=None):
 | 
						|
        if dropout is None:
 | 
						|
            dropout = self.dropout
 | 
						|
        bow = defaultdict(int)
 | 
						|
        all_words = defaultdict(int)
 | 
						|
        for word in doc:
 | 
						|
            if numpy.random.random() >= dropout and not word.is_punct:
 | 
						|
                bow[word.lower] += 1
 | 
						|
            all_words[word.lower] += 1
 | 
						|
        if sum(bow.values()) >= 1:
 | 
						|
            return bow
 | 
						|
        else:
 | 
						|
            return all_words
 | 
						|
 | 
						|
    def bow2vec(self, bow, E):
 | 
						|
        self.vector.fill(0)
 | 
						|
        n = 0
 | 
						|
        for orth_id, freq in bow.items():
 | 
						|
            self.vector += self.nlp.vocab[self.nlp.vocab.strings[orth_id]].vector * freq
 | 
						|
            # Apply the fine-tuning we've learned
 | 
						|
            if orth_id < E.shape[0]:
 | 
						|
                self.vector += E[orth_id] * freq
 | 
						|
            n += freq
 | 
						|
        return self.vector / n
 | 
						|
 | 
						|
 | 
						|
class NeuralNetwork(object):
 | 
						|
    def __init__(self, depth, width, n_classes, n_vocab, extracter, optimizer):
 | 
						|
        self.depth = depth
 | 
						|
        self.width = width
 | 
						|
        self.n_classes = n_classes
 | 
						|
        self.weights = Params.random(depth, width, width, n_classes, n_vocab)
 | 
						|
        self.doc2bow = extracter.doc2bow
 | 
						|
        self.bow2vec = extracter.bow2vec
 | 
						|
        self.optimizer = optimizer
 | 
						|
        self._gradient = Params.zero(depth, width, width, n_classes, n_vocab)
 | 
						|
        self._activity = numpy.zeros((depth, width))
 | 
						|
 | 
						|
    def train(self, batch):
 | 
						|
        activity = self._activity
 | 
						|
        gradient = self._gradient
 | 
						|
        activity.fill(0)
 | 
						|
        gradient.data.fill(0)
 | 
						|
        loss = 0
 | 
						|
        word_freqs = defaultdict(int)
 | 
						|
        for doc, label in batch:
 | 
						|
            word_ids = self.doc2bow(doc)
 | 
						|
            vector = self.bow2vec(word_ids, self.weights.E)
 | 
						|
            self.forward(activity, vector)
 | 
						|
            loss += self.backprop(vector, gradient, activity, word_ids, label)
 | 
						|
            for w, freq in word_ids.items():
 | 
						|
                word_freqs[w] += freq
 | 
						|
        self.optimizer(self.weights, gradient, len(batch), word_freqs)
 | 
						|
        return loss
 | 
						|
 | 
						|
    def predict(self, doc):
 | 
						|
        actv = self._activity
 | 
						|
        actv.fill(0)
 | 
						|
        W = self.weights.W
 | 
						|
        b = self.weights.b
 | 
						|
        E = self.weights.E
 | 
						|
        
 | 
						|
        vector = self.bow2vec(self.doc2bow(doc, dropout=0.0), E)
 | 
						|
        self.forward(actv, vector)
 | 
						|
        return numpy.argmax(softmax(actv[-1], W[-1], b[-1]))
 | 
						|
 | 
						|
    def forward(self, actv, in_):
 | 
						|
        actv.fill(0)
 | 
						|
        W = self.weights.W; b = self.weights.b
 | 
						|
        actv[0] = relu(in_, W[0], b[0])
 | 
						|
        for i in range(1, self.depth):
 | 
						|
            actv[i] = relu(actv[i-1], W[i], b[i])
 | 
						|
 | 
						|
    def backprop(self, input_vector, gradient, activity, ids, label):
 | 
						|
        W = self.weights.W
 | 
						|
        b = self.weights.b
 | 
						|
 | 
						|
        target = numpy.zeros(self.n_classes)
 | 
						|
        target[label] = 1.0
 | 
						|
        pred = softmax(activity[-1], W[-1], b[-1])
 | 
						|
        delta = pred - target
 | 
						|
 | 
						|
        for i in range(self.depth, 0, -1):
 | 
						|
            gradient.b[i] += delta
 | 
						|
            gradient.W[i] += numpy.outer(delta, activity[i-1])
 | 
						|
            delta = d_relu(activity[i-1]) * W[i].T.dot(delta)
 | 
						|
 | 
						|
        gradient.b[0] += delta
 | 
						|
        gradient.W[0] += numpy.outer(delta, input_vector)
 | 
						|
        tuning = W[0].T.dot(delta).reshape((self.width,)) / len(ids)
 | 
						|
        for w, freq in ids.items():
 | 
						|
            if w < gradient.E.shape[0]:
 | 
						|
                gradient.E[w] += tuning * freq
 | 
						|
        return -sum(target * numpy.log(pred))
 | 
						|
 | 
						|
 | 
						|
def softmax(actvn, W, b):
 | 
						|
    w = W.dot(actvn) + b
 | 
						|
    ew = numpy.exp(w - max(w))
 | 
						|
    return (ew / sum(ew)).ravel()
 | 
						|
 | 
						|
 | 
						|
def relu(actvn, W, b):
 | 
						|
    x = W.dot(actvn) + b
 | 
						|
    return x * (x > 0)
 | 
						|
 | 
						|
 | 
						|
def d_relu(x):
 | 
						|
    return x > 0
 | 
						|
 | 
						|
 | 
						|
class Adagrad(object):
 | 
						|
    def __init__(self, lr, rho):
 | 
						|
        self.eps = 1e-3
 | 
						|
        # initial learning rate
 | 
						|
        self.learning_rate = lr
 | 
						|
        self.rho = rho
 | 
						|
        # stores sum of squared gradients 
 | 
						|
        #self.h = numpy.zeros(self.dim)
 | 
						|
        #self._curr_rate = numpy.zeros(self.h.shape)
 | 
						|
        self.h = None
 | 
						|
        self._curr_rate = None
 | 
						|
    
 | 
						|
    def __call__(self, weights, gradient, batch_size, word_freqs):
 | 
						|
        if self.h is None:
 | 
						|
            self.h = numpy.zeros(gradient.data.shape)
 | 
						|
            self._curr_rate = numpy.zeros(gradient.data.shape)
 | 
						|
        self.L2_penalty(gradient, weights, word_freqs)
 | 
						|
        update = self.rescale(gradient.data / batch_size)
 | 
						|
        weights.data -= update
 | 
						|
 | 
						|
    def rescale(self, gradient):
 | 
						|
        if self.h is None:
 | 
						|
            self.h = numpy.zeros(gradient.data.shape)
 | 
						|
            self._curr_rate = numpy.zeros(gradient.data.shape)
 | 
						|
        self._curr_rate.fill(0)
 | 
						|
        self.h += gradient ** 2
 | 
						|
        self._curr_rate = self.learning_rate / (numpy.sqrt(self.h) + self.eps)
 | 
						|
        return self._curr_rate * gradient
 | 
						|
 | 
						|
    def L2_penalty(self, gradient, weights, word_freqs):
 | 
						|
        # L2 Regularization
 | 
						|
        for i in range(len(weights.W)):
 | 
						|
            gradient.W[i] += weights.W[i] * self.rho
 | 
						|
            gradient.b[i] += weights.b[i] * self.rho
 | 
						|
        for w, freq in word_freqs.items():
 | 
						|
            if w < gradient.E.shape[0]:
 | 
						|
                gradient.E[w] += weights.E[w] * self.rho
 | 
						|
 | 
						|
 | 
						|
class Params(object):
 | 
						|
    @classmethod
 | 
						|
    def zero(cls, depth, n_embed, n_hidden, n_labels, n_vocab):
 | 
						|
        return cls(depth, n_embed, n_hidden, n_labels, n_vocab, lambda x: numpy.zeros((x,)))
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def random(cls, depth, nE, nH, nL, nV):
 | 
						|
        return cls(depth, nE, nH, nL, nV, lambda x: (numpy.random.rand(x) * 2 - 1) * 0.08)
 | 
						|
 | 
						|
    def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, initializer):
 | 
						|
        nE = n_embed; nH = n_hidden; nL = n_labels; nV = n_vocab
 | 
						|
        n_weights = sum([
 | 
						|
            (nE * nH) + nH, 
 | 
						|
            (nH * nH  + nH) * depth,
 | 
						|
            (nH * nL) + nL,
 | 
						|
            (nV * nE)
 | 
						|
        ])
 | 
						|
        self.data = initializer(n_weights)
 | 
						|
        self.W = []
 | 
						|
        self.b = []
 | 
						|
        i = self._add_layer(0, nE, nH)
 | 
						|
        for _ in range(1, depth):
 | 
						|
            i = self._add_layer(i, nH, nH)
 | 
						|
        i = self._add_layer(i, nL, nH)
 | 
						|
        self.E = self.data[i : i + (nV * nE)].reshape((nV, nE))
 | 
						|
        self.E.fill(0)
 | 
						|
 | 
						|
    def _add_layer(self, start, x, y):
 | 
						|
        end = start + (x * y)
 | 
						|
        self.W.append(self.data[start : end].reshape((x, y)))
 | 
						|
        self.b.append(self.data[end : end + x].reshape((x, )))
 | 
						|
        return end + x
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    data_dir=("Data directory", "positional", None, Path),
 | 
						|
    n_iter=("Number of iterations (epochs)", "option", "i", int),
 | 
						|
    width=("Size of hidden layers", "option", "H", int),
 | 
						|
    depth=("Depth", "option", "d", int),
 | 
						|
    dropout=("Drop-out rate", "option", "r", float),
 | 
						|
    rho=("Regularization penalty", "option", "p", float),
 | 
						|
    eta=("Learning rate", "option", "e", float),
 | 
						|
    batch_size=("Batch size", "option", "b", int),
 | 
						|
    vocab_size=("Number of words to fine-tune", "option", "w", int),
 | 
						|
)
 | 
						|
def main(data_dir, depth=3, width=300, n_iter=5, vocab_size=40000,
 | 
						|
         batch_size=24, dropout=0.3, rho=1e-5, eta=0.005):
 | 
						|
    n_classes = 2
 | 
						|
    print("Loading")
 | 
						|
    nlp = spacy.en.English(parser=False)
 | 
						|
    train_data, dev_data = partition(read_data(nlp, data_dir / 'train'), 0.8)
 | 
						|
    print("Begin training")
 | 
						|
    extracter = Extractor(nlp, width, dropout=0.3)
 | 
						|
    optimizer = Adagrad(eta, rho)
 | 
						|
    model = NeuralNetwork(depth, width, n_classes, vocab_size, extracter, optimizer)
 | 
						|
    prev_best = 0
 | 
						|
    best_weights = None
 | 
						|
    for epoch in range(n_iter):
 | 
						|
        numpy.random.shuffle(train_data)
 | 
						|
        train_loss = 0.0
 | 
						|
        for batch in minibatch(train_data, bs=batch_size):
 | 
						|
            train_loss += model.train(batch)
 | 
						|
        n_correct = sum(model.predict(x) == y for x, y in dev_data)
 | 
						|
        print(epoch, train_loss, n_correct / len(dev_data))
 | 
						|
        if n_correct >= prev_best:
 | 
						|
            best_weights = model.weights.data.copy()
 | 
						|
            prev_best = n_correct
 | 
						|
 | 
						|
    model.weights.data = best_weights
 | 
						|
    print("Evaluating")
 | 
						|
    eval_data = list(read_data(nlp, data_dir / 'test'))
 | 
						|
    n_correct = sum(model.predict(x) == y for x, y in eval_data)
 | 
						|
    print(n_correct / len(eval_data))
 | 
						|
 
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    #import cProfile
 | 
						|
    #import pstats
 | 
						|
    #cProfile.runctx("main(Path('data/aclImdb'))", globals(), locals(), "Profile.prof")
 | 
						|
    #s = pstats.Stats("Profile.prof")
 | 
						|
    #s.strip_dirs().sort_stats("time").print_stats(100)
 | 
						|
    plac.call(main)
 |