mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Add vector deduplication * Add `Vocab.deduplicate_vectors()` * Always run deduplication in `spacy init vectors` * Clean up a few vector-related error messages and docs examples * Always unique with numpy * Fix types
		
			
				
	
	
		
			584 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			584 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: profile=True
 | |
| from libc.string cimport memcpy
 | |
| 
 | |
| import numpy
 | |
| import srsly
 | |
| from thinc.api import get_array_module, get_current_ops
 | |
| import functools
 | |
| 
 | |
| from .lexeme cimport EMPTY_LEXEME, OOV_RANK
 | |
| from .lexeme cimport Lexeme
 | |
| from .typedefs cimport attr_t
 | |
| from .tokens.token cimport Token
 | |
| from .attrs cimport LANG, ORTH
 | |
| 
 | |
| from .compat import copy_reg
 | |
| from .errors import Errors
 | |
| from .attrs import intify_attrs, NORM, IS_STOP
 | |
| from .vectors import Vectors, Mode as VectorsMode
 | |
| from .util import registry
 | |
| from .lookups import Lookups
 | |
| from . import util
 | |
| from .lang.norm_exceptions import BASE_NORMS
 | |
| from .lang.lex_attrs import LEX_ATTRS, is_stop, get_lang
 | |
| 
 | |
| 
 | |
| def create_vocab(lang, defaults, vectors_name=None):
 | |
|     # If the spacy-lookups-data package is installed, we pre-populate the lookups
 | |
|     # with lexeme data, if available
 | |
|     lex_attrs = {**LEX_ATTRS, **defaults.lex_attr_getters}
 | |
|     # This is messy, but it's the minimal working fix to Issue #639.
 | |
|     lex_attrs[IS_STOP] = functools.partial(is_stop, stops=defaults.stop_words)
 | |
|     # Ensure that getter can be pickled
 | |
|     lex_attrs[LANG] = functools.partial(get_lang, lang=lang)
 | |
|     lex_attrs[NORM] = util.add_lookups(
 | |
|         lex_attrs.get(NORM, LEX_ATTRS[NORM]),
 | |
|         BASE_NORMS,
 | |
|     )
 | |
|     return Vocab(
 | |
|         lex_attr_getters=lex_attrs,
 | |
|         writing_system=defaults.writing_system,
 | |
|         get_noun_chunks=defaults.syntax_iterators.get("noun_chunks"),
 | |
|         vectors_name=vectors_name,
 | |
|     )
 | |
| 
 | |
| 
 | |
| cdef class Vocab:
 | |
|     """A look-up table that allows you to access `Lexeme` objects. The `Vocab`
 | |
|     instance also provides access to the `StringStore`, and owns underlying
 | |
|     C-data that is shared between `Doc` objects.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/vocab
 | |
|     """
 | |
|     def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None,
 | |
|                  oov_prob=-20., vectors_name=None, writing_system={},
 | |
|                  get_noun_chunks=None, **deprecated_kwargs):
 | |
|         """Create the vocabulary.
 | |
| 
 | |
|         lex_attr_getters (dict): A dictionary mapping attribute IDs to
 | |
|             functions to compute them. Defaults to `None`.
 | |
|         strings (StringStore): StringStore that maps strings to integers, and
 | |
|             vice versa.
 | |
|         lookups (Lookups): Container for large lookup tables and dictionaries.
 | |
|         oov_prob (float): Default OOV probability.
 | |
|         vectors_name (str): Optional name to identify the vectors table.
 | |
|         get_noun_chunks (Optional[Callable[[Union[Doc, Span], Iterator[Tuple[int, int, int]]]]]):
 | |
|             A function that yields base noun phrases used for Doc.noun_chunks.
 | |
|         """
 | |
|         lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
 | |
|         if lookups in (None, True, False):
 | |
|             lookups = Lookups()
 | |
|         self.cfg = {'oov_prob': oov_prob}
 | |
|         self.mem = Pool()
 | |
|         self._by_orth = PreshMap()
 | |
|         self.strings = StringStore()
 | |
|         self.length = 0
 | |
|         if strings:
 | |
|             for string in strings:
 | |
|                 _ = self[string]
 | |
|         self.lex_attr_getters = lex_attr_getters
 | |
|         self.morphology = Morphology(self.strings)
 | |
|         self.vectors = Vectors(strings=self.strings, name=vectors_name)
 | |
|         self.lookups = lookups
 | |
|         self.writing_system = writing_system
 | |
|         self.get_noun_chunks = get_noun_chunks
 | |
| 
 | |
|     property vectors:
 | |
|         def __get__(self):
 | |
|             return self._vectors
 | |
| 
 | |
|         def __set__(self, vectors):
 | |
|             for s in vectors.strings:
 | |
|                 self.strings.add(s)
 | |
|             self._vectors = vectors
 | |
|             self._vectors.strings = self.strings
 | |
| 
 | |
|     @property
 | |
|     def lang(self):
 | |
|         langfunc = None
 | |
|         if self.lex_attr_getters:
 | |
|             langfunc = self.lex_attr_getters.get(LANG, None)
 | |
|         return langfunc("_") if langfunc else ""
 | |
| 
 | |
|     def __len__(self):
 | |
|         """The current number of lexemes stored.
 | |
| 
 | |
|         RETURNS (int): The current number of lexemes stored.
 | |
|         """
 | |
|         return self.length
 | |
| 
 | |
|     def add_flag(self, flag_getter, int flag_id=-1):
 | |
|         """Set a new boolean flag to words in the vocabulary.
 | |
| 
 | |
|         The flag_getter function will be called over the words currently in the
 | |
|         vocab, and then applied to new words as they occur. You'll then be able
 | |
|         to access the flag value on each token using token.check_flag(flag_id).
 | |
|         See also: `Lexeme.set_flag`, `Lexeme.check_flag`, `Token.set_flag`,
 | |
|         `Token.check_flag`.
 | |
| 
 | |
|         flag_getter (callable): A function `f(str) -> bool`, to get the
 | |
|             flag value.
 | |
|         flag_id (int): An integer between 1 and 63 (inclusive), specifying
 | |
|             the bit at which the flag will be stored. If -1, the lowest
 | |
|             available bit will be chosen.
 | |
|         RETURNS (int): The integer ID by which the flag value can be checked.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#add_flag
 | |
|         """
 | |
|         if flag_id == -1:
 | |
|             for bit in range(1, 64):
 | |
|                 if bit not in self.lex_attr_getters:
 | |
|                     flag_id = bit
 | |
|                     break
 | |
|             else:
 | |
|                 raise ValueError(Errors.E062)
 | |
|         elif flag_id >= 64 or flag_id < 1:
 | |
|             raise ValueError(Errors.E063.format(value=flag_id))
 | |
|         for lex in self:
 | |
|             lex.set_flag(flag_id, flag_getter(lex.orth_))
 | |
|         self.lex_attr_getters[flag_id] = flag_getter
 | |
|         return flag_id
 | |
| 
 | |
|     cdef const LexemeC* get(self, Pool mem, str string) except NULL:
 | |
|         """Get a pointer to a `LexemeC` from the lexicon, creating a new
 | |
|         `Lexeme` if necessary using memory acquired from the given pool. If the
 | |
|         pool is the lexicon's own memory, the lexeme is saved in the lexicon.
 | |
|         """
 | |
|         if string == "":
 | |
|             return &EMPTY_LEXEME
 | |
|         cdef LexemeC* lex
 | |
|         cdef hash_t key = self.strings[string]
 | |
|         lex = <LexemeC*>self._by_orth.get(key)
 | |
|         cdef size_t addr
 | |
|         if lex != NULL:
 | |
|             assert lex.orth in self.strings
 | |
|             if lex.orth != key:
 | |
|                 raise KeyError(Errors.E064.format(string=lex.orth,
 | |
|                                                   orth=key, orth_id=string))
 | |
|             return lex
 | |
|         else:
 | |
|             return self._new_lexeme(mem, string)
 | |
| 
 | |
|     cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
 | |
|         """Get a pointer to a `LexemeC` from the lexicon, creating a new
 | |
|         `Lexeme` if necessary using memory acquired from the given pool. If the
 | |
|         pool is the lexicon's own memory, the lexeme is saved in the lexicon.
 | |
|         """
 | |
|         if orth == 0:
 | |
|             return &EMPTY_LEXEME
 | |
|         cdef LexemeC* lex
 | |
|         lex = <LexemeC*>self._by_orth.get(orth)
 | |
|         if lex != NULL:
 | |
|             return lex
 | |
|         else:
 | |
|             return self._new_lexeme(mem, self.strings[orth])
 | |
| 
 | |
|     cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL:
 | |
|         # I think this heuristic is bad, and the Vocab should always
 | |
|         # own the lexemes. It avoids weird bugs this way, as it's how the thing
 | |
|         # was originally supposed to work. The best solution to the growing
 | |
|         # memory use is to periodically reset the vocab, which is an action
 | |
|         # that should be up to the user to do (so we don't need to keep track
 | |
|         # of the doc ownership).
 | |
|         # TODO: Change the C API so that the mem isn't passed in here.
 | |
|         mem = self.mem
 | |
|         #if len(string) < 3 or self.length < 10000:
 | |
|         #    mem = self.mem
 | |
|         cdef bint is_oov = mem is not self.mem
 | |
|         lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
 | |
|         lex.orth = self.strings.add(string)
 | |
|         lex.length = len(string)
 | |
|         if self.vectors is not None:
 | |
|             lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK)
 | |
|         else:
 | |
|             lex.id = OOV_RANK
 | |
|         if self.lex_attr_getters is not None:
 | |
|             for attr, func in self.lex_attr_getters.items():
 | |
|                 value = func(string)
 | |
|                 if isinstance(value, str):
 | |
|                     value = self.strings.add(value)
 | |
|                 if value is not None:
 | |
|                     Lexeme.set_struct_attr(lex, attr, value)
 | |
|         if not is_oov:
 | |
|             self._add_lex_to_vocab(lex.orth, lex)
 | |
|         if lex == NULL:
 | |
|             raise ValueError(Errors.E085.format(string=string))
 | |
|         return lex
 | |
| 
 | |
|     cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1:
 | |
|         self._by_orth.set(lex.orth, <void*>lex)
 | |
|         self.length += 1
 | |
| 
 | |
|     def __contains__(self, key):
 | |
|         """Check whether the string or int key has an entry in the vocabulary.
 | |
| 
 | |
|         string (str): The ID string.
 | |
|         RETURNS (bool) Whether the string has an entry in the vocabulary.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#contains
 | |
|         """
 | |
|         cdef hash_t int_key
 | |
|         if isinstance(key, bytes):
 | |
|             int_key = self.strings[key.decode("utf8")]
 | |
|         elif isinstance(key, str):
 | |
|             int_key = self.strings[key]
 | |
|         else:
 | |
|             int_key = key
 | |
|         lex = self._by_orth.get(int_key)
 | |
|         return lex is not NULL
 | |
| 
 | |
|     def __iter__(self):
 | |
|         """Iterate over the lexemes in the vocabulary.
 | |
| 
 | |
|         YIELDS (Lexeme): An entry in the vocabulary.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#iter
 | |
|         """
 | |
|         cdef attr_t key
 | |
|         cdef size_t addr
 | |
|         for key, addr in self._by_orth.items():
 | |
|             lex = Lexeme(self, key)
 | |
|             yield lex
 | |
| 
 | |
|     def __getitem__(self, id_or_string):
 | |
|         """Retrieve a lexeme, given an int ID or a unicode string. If a
 | |
|         previously unseen unicode string is given, a new lexeme is created and
 | |
|         stored.
 | |
| 
 | |
|         id_or_string (int or str): The integer ID of a word, or its unicode
 | |
|             string. If `int >= Lexicon.size`, `IndexError` is raised. If
 | |
|             `id_or_string` is neither an int nor a unicode string, `ValueError`
 | |
|             is raised.
 | |
|         RETURNS (Lexeme): The lexeme indicated by the given ID.
 | |
| 
 | |
|         EXAMPLE:
 | |
|             >>> apple = nlp.vocab.strings["apple"]
 | |
|             >>> assert nlp.vocab[apple] == nlp.vocab[u"apple"]
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#getitem
 | |
|         """
 | |
|         cdef attr_t orth
 | |
|         if isinstance(id_or_string, str):
 | |
|             orth = self.strings.add(id_or_string)
 | |
|         else:
 | |
|             orth = id_or_string
 | |
|         return Lexeme(self, orth)
 | |
| 
 | |
|     cdef const TokenC* make_fused_token(self, substrings) except NULL:
 | |
|         cdef int i
 | |
|         tokens = <TokenC*>self.mem.alloc(len(substrings) + 1, sizeof(TokenC))
 | |
|         for i, props in enumerate(substrings):
 | |
|             props = intify_attrs(props, strings_map=self.strings,
 | |
|                                  _do_deprecated=True)
 | |
|             token = &tokens[i]
 | |
|             # Set the special tokens up to have arbitrary attributes
 | |
|             lex = <LexemeC*>self.get_by_orth(self.mem, props[ORTH])
 | |
|             token.lex = lex
 | |
|             for attr_id, value in props.items():
 | |
|                 Token.set_struct_attr(token, attr_id, value)
 | |
|                 # NORM is the only one that overlaps between the two
 | |
|                 # (which is maybe not great?)
 | |
|                 if attr_id != NORM:
 | |
|                     Lexeme.set_struct_attr(lex, attr_id, value)
 | |
|         return tokens
 | |
| 
 | |
|     @property
 | |
|     def vectors_length(self):
 | |
|         return self.vectors.shape[1]
 | |
| 
 | |
|     def reset_vectors(self, *, width=None, shape=None):
 | |
|         """Drop the current vector table. Because all vectors must be the same
 | |
|         width, you have to call this to change the size of the vectors.
 | |
|         """
 | |
|         if width is not None and shape is not None:
 | |
|             raise ValueError(Errors.E065.format(width=width, shape=shape))
 | |
|         elif shape is not None:
 | |
|             self.vectors = Vectors(strings=self.strings, shape=shape)
 | |
|         else:
 | |
|             width = width if width is not None else self.vectors.shape[1]
 | |
|             self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
 | |
| 
 | |
|     def deduplicate_vectors(self):
 | |
|         if self.vectors.mode != VectorsMode.default:
 | |
|             raise ValueError(Errors.E858.format(
 | |
|                 mode=self.vectors.mode,
 | |
|                 alternative=""
 | |
|             ))
 | |
|         ops = get_current_ops()
 | |
|         xp = get_array_module(self.vectors.data)
 | |
|         filled = xp.asarray(
 | |
|             sorted(list({row for row in self.vectors.key2row.values()}))
 | |
|         )
 | |
|         # deduplicate data and remap keys
 | |
|         data = numpy.unique(ops.to_numpy(self.vectors.data[filled]), axis=0)
 | |
|         data = ops.asarray(data)
 | |
|         if data.shape == self.vectors.data.shape:
 | |
|             # nothing to deduplicate
 | |
|             return
 | |
|         row_by_bytes = {row.tobytes(): i for i, row in enumerate(data)}
 | |
|         key2row = {
 | |
|             key: row_by_bytes[self.vectors.data[row].tobytes()]
 | |
|             for key, row in self.vectors.key2row.items()
 | |
|         }
 | |
|         # replace vectors with deduplicated version
 | |
|         self.vectors = Vectors(strings=self.strings, data=data, name=self.vectors.name)
 | |
|         for key, row in key2row.items():
 | |
|             self.vectors.add(key, row=row)
 | |
| 
 | |
|     def prune_vectors(self, nr_row, batch_size=1024):
 | |
|         """Reduce the current vector table to `nr_row` unique entries. Words
 | |
|         mapped to the discarded vectors will be remapped to the closest vector
 | |
|         among those remaining.
 | |
| 
 | |
|         For example, suppose the original table had vectors for the words:
 | |
|         ['sat', 'cat', 'feline', 'reclined']. If we prune the vector table to
 | |
|         two rows, we would discard the vectors for 'feline' and 'reclined'.
 | |
|         These words would then be remapped to the closest remaining vector
 | |
|         -- so "feline" would have the same vector as "cat", and "reclined"
 | |
|         would have the same vector as "sat".
 | |
| 
 | |
|         The similarities are judged by cosine. The original vectors may
 | |
|         be large, so the cosines are calculated in minibatches, to reduce
 | |
|         memory usage.
 | |
| 
 | |
|         nr_row (int): The number of rows to keep in the vector table.
 | |
|         batch_size (int): Batch of vectors for calculating the similarities.
 | |
|             Larger batch sizes might be faster, while temporarily requiring
 | |
|             more memory.
 | |
|         RETURNS (dict): A dictionary keyed by removed words mapped to
 | |
|             `(string, score)` tuples, where `string` is the entry the removed
 | |
|             word was mapped to, and `score` the similarity score between the
 | |
|             two words.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#prune_vectors
 | |
|         """
 | |
|         if self.vectors.mode != VectorsMode.default:
 | |
|             raise ValueError(Errors.E858.format(
 | |
|                 mode=self.vectors.mode,
 | |
|                 alternative=""
 | |
|             ))
 | |
|         ops = get_current_ops()
 | |
|         xp = get_array_module(self.vectors.data)
 | |
|         # Make sure all vectors are in the vocab
 | |
|         for orth in self.vectors:
 | |
|             self[orth]
 | |
|         # Make prob negative so it sorts by rank ascending
 | |
|         # (key2row contains the rank)
 | |
|         priority = [(-lex.prob, self.vectors.key2row[lex.orth], lex.orth)
 | |
|                     for lex in self if lex.orth in self.vectors.key2row]
 | |
|         priority.sort()
 | |
|         indices = xp.asarray([i for (prob, i, key) in priority], dtype="uint64")
 | |
|         keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64")
 | |
|         keep = xp.ascontiguousarray(self.vectors.data[indices[:nr_row]])
 | |
|         toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]])
 | |
|         self.vectors = Vectors(strings=self.strings, data=keep, keys=keys[:nr_row], name=self.vectors.name)
 | |
|         syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size)
 | |
|         syn_keys = ops.to_numpy(syn_keys)
 | |
|         remap = {}
 | |
|         for i, key in enumerate(ops.to_numpy(keys[nr_row:])):
 | |
|             self.vectors.add(key, row=syn_rows[i][0])
 | |
|             word = self.strings[key]
 | |
|             synonym = self.strings[syn_keys[i][0]]
 | |
|             score = scores[i][0]
 | |
|             remap[word] = (synonym, score)
 | |
|         return remap
 | |
| 
 | |
|     def get_vector(self, orth):
 | |
|         """Retrieve a vector for a word in the vocabulary. Words can be looked
 | |
|         up by string or int ID. If the current vectors do not contain an entry
 | |
|         for the word, a 0-vector with the same number of dimensions as the
 | |
|         current vectors is returned.
 | |
| 
 | |
|         orth (int / unicode): The hash value of a word, or its unicode string.
 | |
|         RETURNS (numpy.ndarray or cupy.ndarray): A word vector. Size
 | |
|             and shape determined by the `vocab.vectors` instance. Usually, a
 | |
|             numpy ndarray of shape (300,) and dtype float32.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#get_vector
 | |
|         """
 | |
|         if isinstance(orth, str):
 | |
|             orth = self.strings.add(orth)
 | |
|         if self.has_vector(orth):
 | |
|             return self.vectors[orth]
 | |
|         xp = get_array_module(self.vectors.data)
 | |
|         vectors = xp.zeros((self.vectors_length,), dtype="f")
 | |
|         return vectors
 | |
| 
 | |
|     def set_vector(self, orth, vector):
 | |
|         """Set a vector for a word in the vocabulary. Words can be referenced
 | |
|         by string or int ID.
 | |
| 
 | |
|         orth (int / str): The word.
 | |
|         vector (numpy.ndarray or cupy.nadarry[ndim=1, dtype='float32']): The vector to set.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#set_vector
 | |
|         """
 | |
|         if isinstance(orth, str):
 | |
|             orth = self.strings.add(orth)
 | |
|         if self.vectors.is_full and orth not in self.vectors:
 | |
|             new_rows = max(100, int(self.vectors.shape[0]*1.3))
 | |
|             if self.vectors.shape[1] == 0:
 | |
|                 width = vector.size
 | |
|             else:
 | |
|                 width = self.vectors.shape[1]
 | |
|             self.vectors.resize((new_rows, width))
 | |
|         lex = self[orth]  # Add word to vocab if necessary
 | |
|         row = self.vectors.add(orth, vector=vector)
 | |
|         if row >= 0:
 | |
|             lex.rank = row
 | |
| 
 | |
|     def has_vector(self, orth):
 | |
|         """Check whether a word has a vector. Returns False if no vectors have
 | |
|         been loaded. Words can be looked up by string or int ID.
 | |
| 
 | |
|         orth (int / str): The word.
 | |
|         RETURNS (bool): Whether the word has a vector.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#has_vector
 | |
|         """
 | |
|         if isinstance(orth, str):
 | |
|             orth = self.strings.add(orth)
 | |
|         return orth in self.vectors
 | |
| 
 | |
|     property lookups:
 | |
|         def __get__(self):
 | |
|             return self._lookups
 | |
| 
 | |
|         def __set__(self, lookups):
 | |
|             self._lookups = lookups
 | |
|             if lookups.has_table("lexeme_norm"):
 | |
|                 self.lex_attr_getters[NORM] = util.add_lookups(
 | |
|                     self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]),
 | |
|                     self.lookups.get_table("lexeme_norm"),
 | |
|                 )
 | |
| 
 | |
| 
 | |
|     def to_disk(self, path, *, exclude=tuple()):
 | |
|         """Save the current state to a directory.
 | |
| 
 | |
|         path (str or Path): A path to a directory, which will be created if
 | |
|             it doesn't exist.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#to_disk
 | |
|         """
 | |
|         path = util.ensure_path(path)
 | |
|         if not path.exists():
 | |
|             path.mkdir()
 | |
|         setters = ["strings", "vectors"]
 | |
|         if "strings" not in exclude:
 | |
|             self.strings.to_disk(path / "strings.json")
 | |
|         if "vectors" not in "exclude":
 | |
|             self.vectors.to_disk(path, exclude=["strings"])
 | |
|         if "lookups" not in "exclude":
 | |
|             self.lookups.to_disk(path)
 | |
| 
 | |
|     def from_disk(self, path, *, exclude=tuple()):
 | |
|         """Loads state from a directory. Modifies the object in place and
 | |
|         returns it.
 | |
| 
 | |
|         path (str or Path): A path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (Vocab): The modified `Vocab` object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#to_disk
 | |
|         """
 | |
|         path = util.ensure_path(path)
 | |
|         getters = ["strings", "vectors"]
 | |
|         if "strings" not in exclude:
 | |
|             self.strings.from_disk(path / "strings.json")  # TODO: add exclude?
 | |
|         if "vectors" not in exclude:
 | |
|             if self.vectors is not None:
 | |
|                 self.vectors.from_disk(path, exclude=["strings"])
 | |
|         if "lookups" not in exclude:
 | |
|             self.lookups.from_disk(path)
 | |
|         if "lexeme_norm" in self.lookups:
 | |
|             self.lex_attr_getters[NORM] = util.add_lookups(
 | |
|                 self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), self.lookups.get_table("lexeme_norm")
 | |
|             )
 | |
|         self.length = 0
 | |
|         self._by_orth = PreshMap()
 | |
|         return self
 | |
| 
 | |
|     def to_bytes(self, *, exclude=tuple()):
 | |
|         """Serialize the current state to a binary string.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (bytes): The serialized form of the `Vocab` object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#to_bytes
 | |
|         """
 | |
|         def deserialize_vectors():
 | |
|             if self.vectors is None:
 | |
|                 return None
 | |
|             else:
 | |
|                 return self.vectors.to_bytes(exclude=["strings"])
 | |
| 
 | |
|         getters = {
 | |
|             "strings": lambda: self.strings.to_bytes(),
 | |
|             "vectors": deserialize_vectors,
 | |
|             "lookups": lambda: self.lookups.to_bytes(),
 | |
|         }
 | |
|         return util.to_bytes(getters, exclude)
 | |
| 
 | |
|     def from_bytes(self, bytes_data, *, exclude=tuple()):
 | |
|         """Load state from a binary string.
 | |
| 
 | |
|         bytes_data (bytes): The data to load from.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (Vocab): The `Vocab` object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vocab#from_bytes
 | |
|         """
 | |
|         def serialize_vectors(b):
 | |
|             if self.vectors is None:
 | |
|                 return None
 | |
|             else:
 | |
|                 return self.vectors.from_bytes(b, exclude=["strings"])
 | |
| 
 | |
|         setters = {
 | |
|             "strings": lambda b: self.strings.from_bytes(b),
 | |
|             "vectors": lambda b: serialize_vectors(b),
 | |
|             "lookups": lambda b: self.lookups.from_bytes(b),
 | |
|         }
 | |
|         util.from_bytes(bytes_data, setters, exclude)
 | |
|         if "lexeme_norm" in self.lookups:
 | |
|             self.lex_attr_getters[NORM] = util.add_lookups(
 | |
|                 self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), self.lookups.get_table("lexeme_norm")
 | |
|             )
 | |
|         self.length = 0
 | |
|         self._by_orth = PreshMap()
 | |
|         return self
 | |
| 
 | |
|     def _reset_cache(self, keys, strings):
 | |
|         # I'm not sure this made sense. Disable it for now.
 | |
|         raise NotImplementedError
 | |
| 
 | |
| 
 | |
| def pickle_vocab(vocab):
 | |
|     sstore = vocab.strings
 | |
|     vectors = vocab.vectors
 | |
|     morph = vocab.morphology
 | |
|     _unused_object = vocab._unused_object
 | |
|     lex_attr_getters = srsly.pickle_dumps(vocab.lex_attr_getters)
 | |
|     lookups = vocab.lookups
 | |
|     get_noun_chunks = vocab.get_noun_chunks
 | |
|     return (unpickle_vocab,
 | |
|             (sstore, vectors, morph, _unused_object, lex_attr_getters, lookups, get_noun_chunks))
 | |
| 
 | |
| 
 | |
| def unpickle_vocab(sstore, vectors, morphology, _unused_object,
 | |
|                    lex_attr_getters, lookups, get_noun_chunks):
 | |
|     cdef Vocab vocab = Vocab()
 | |
|     vocab.vectors = vectors
 | |
|     vocab.strings = sstore
 | |
|     vocab.morphology = morphology
 | |
|     vocab._unused_object = _unused_object
 | |
|     vocab.lex_attr_getters = srsly.pickle_loads(lex_attr_getters)
 | |
|     vocab.lookups = lookups
 | |
|     vocab.get_noun_chunks = get_noun_chunks
 | |
|     return vocab
 | |
| 
 | |
| 
 | |
| copy_reg.pickle(Vocab, pickle_vocab, unpickle_vocab)
 |