mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			214 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			214 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
"""
 | 
						|
MALT-style dependency parser
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals
 | 
						|
cimport cython
 | 
						|
 | 
						|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
 | 
						|
 | 
						|
from libc.stdint cimport uint32_t, uint64_t
 | 
						|
from libc.string cimport memset, memcpy
 | 
						|
import random
 | 
						|
import os.path
 | 
						|
from os import path
 | 
						|
import shutil
 | 
						|
import json
 | 
						|
import sys
 | 
						|
 | 
						|
from cymem.cymem cimport Pool, Address
 | 
						|
from murmurhash.mrmr cimport hash64
 | 
						|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
 | 
						|
 | 
						|
from util import Config
 | 
						|
 | 
						|
from thinc.api cimport Example, ExampleC
 | 
						|
 | 
						|
 | 
						|
from ..structs cimport TokenC
 | 
						|
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..strings cimport StringStore
 | 
						|
 | 
						|
 | 
						|
from .transition_system import OracleError
 | 
						|
from .transition_system cimport TransitionSystem, Transition
 | 
						|
 | 
						|
from ..gold cimport GoldParse
 | 
						|
 | 
						|
from . import _parse_features
 | 
						|
from ._parse_features cimport CONTEXT_SIZE
 | 
						|
from ._parse_features cimport fill_context
 | 
						|
from .stateclass cimport StateClass
 | 
						|
 | 
						|
from .._ml cimport arg_max_if_true
 | 
						|
 | 
						|
 | 
						|
DEBUG = False
 | 
						|
def set_debug(val):
 | 
						|
    global DEBUG
 | 
						|
    DEBUG = val
 | 
						|
 | 
						|
 | 
						|
def get_templates(name):
 | 
						|
    pf = _parse_features
 | 
						|
    if name == 'ner':
 | 
						|
        return pf.ner
 | 
						|
    elif name == 'debug':
 | 
						|
        return pf.unigrams
 | 
						|
    elif name.startswith('embed'):
 | 
						|
        return (pf.words, pf.tags, pf.labels)
 | 
						|
    else:
 | 
						|
        return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
 | 
						|
                pf.tree_shape + pf.trigrams)
 | 
						|
 | 
						|
 | 
						|
def ParserFactory(transition_system):
 | 
						|
    return lambda strings, dir_: Parser(strings, dir_, transition_system)
 | 
						|
 | 
						|
 | 
						|
cdef class Parser:
 | 
						|
    def __init__(self, StringStore strings, transition_system, model):
 | 
						|
        self.moves = transition_system
 | 
						|
        self.model = model
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_dir(cls, model_dir, strings, transition_system):
 | 
						|
        if not os.path.exists(model_dir):
 | 
						|
            print >> sys.stderr, "Warning: No model found at", model_dir
 | 
						|
        elif not os.path.isdir(model_dir):
 | 
						|
            print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
 | 
						|
        cfg = Config.read(model_dir, 'config')
 | 
						|
        moves = transition_system(strings, cfg.labels)
 | 
						|
        templates = get_templates(cfg.features)
 | 
						|
        model = Model(moves.n_moves, templates, model_dir)
 | 
						|
        return cls(strings, moves, model)
 | 
						|
 | 
						|
    def __call__(self, Doc tokens):
 | 
						|
        cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
 | 
						|
        self.moves.initialize_state(stcls)
 | 
						|
 | 
						|
        cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE,
 | 
						|
                                  self.model.n_feats, self.model.n_feats)
 | 
						|
        self.parse(stcls, eg.c)
 | 
						|
        tokens.set_parse(stcls._sent)
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return (Parser, (self.moves.strings, self.moves, self.model), None, None)
 | 
						|
 | 
						|
    cdef void predict(self, StateClass stcls, ExampleC* eg) nogil:
 | 
						|
        memset(eg.scores, 0, eg.nr_class * sizeof(weight_t))
 | 
						|
        self.moves.set_valid(eg.is_valid, stcls)
 | 
						|
        fill_context(eg.atoms, stcls)
 | 
						|
        self.model.set_scores(eg.scores, eg.atoms)
 | 
						|
        eg.guess = arg_max_if_true(eg.scores, eg.is_valid, self.model.n_classes)
 | 
						|
 | 
						|
    cdef void parse(self, StateClass stcls, ExampleC eg) nogil:
 | 
						|
        while not stcls.is_final():
 | 
						|
            self.predict(stcls, &eg)
 | 
						|
            if not eg.is_valid[eg.guess]:
 | 
						|
                break
 | 
						|
            self.moves.c[eg.guess].do(stcls, self.moves.c[eg.guess].label)
 | 
						|
        self.moves.finalize_state(stcls)
 | 
						|
 | 
						|
    def train(self, Doc tokens, GoldParse gold):
 | 
						|
        self.moves.preprocess_gold(gold)
 | 
						|
        cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
 | 
						|
        self.moves.initialize_state(stcls)
 | 
						|
        cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE,
 | 
						|
                                  self.model.n_feats, self.model.n_feats)
 | 
						|
        cdef weight_t loss = 0
 | 
						|
        words = [w.orth_ for w in tokens]
 | 
						|
        cdef Transition G
 | 
						|
        while not stcls.is_final():
 | 
						|
            memset(eg.c.scores, 0, eg.c.nr_class * sizeof(weight_t))
 | 
						|
            self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
 | 
						|
            fill_context(eg.c.atoms, stcls)
 | 
						|
            self.model.train(eg)
 | 
						|
            G = self.moves.c[eg.c.guess]
 | 
						|
 | 
						|
            self.moves.c[eg.c.guess].do(stcls, self.moves.c[eg.c.guess].label)
 | 
						|
            loss += eg.c.loss
 | 
						|
        return loss
 | 
						|
 | 
						|
    def step_through(self, Doc doc):
 | 
						|
        return StepwiseState(self, doc)
 | 
						|
 | 
						|
 | 
						|
cdef class StepwiseState:
 | 
						|
    cdef readonly StateClass stcls
 | 
						|
    cdef readonly Example eg
 | 
						|
    cdef readonly Doc doc
 | 
						|
    cdef readonly Parser parser
 | 
						|
 | 
						|
    def __init__(self, Parser parser, Doc doc):
 | 
						|
        self.parser = parser
 | 
						|
        self.doc = doc
 | 
						|
        self.stcls = StateClass.init(doc.data, doc.length)
 | 
						|
        self.parser.moves.initialize_state(self.stcls)
 | 
						|
        self.eg = Example(self.parser.model.n_classes, CONTEXT_SIZE,
 | 
						|
                          self.parser.model.n_feats, self.parser.model.n_feats)
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        return self
 | 
						|
 | 
						|
    def __exit__(self, type, value, traceback):
 | 
						|
        self.finish()
 | 
						|
 | 
						|
    @property
 | 
						|
    def is_final(self):
 | 
						|
        return self.stcls.is_final()
 | 
						|
 | 
						|
    @property
 | 
						|
    def stack(self):
 | 
						|
        return self.stcls.stack
 | 
						|
 | 
						|
    @property
 | 
						|
    def queue(self):
 | 
						|
        return self.stcls.queue
 | 
						|
 | 
						|
    @property
 | 
						|
    def heads(self):
 | 
						|
        return [self.stcls.H(i) for i in range(self.stcls.length)]
 | 
						|
 | 
						|
    @property
 | 
						|
    def deps(self):
 | 
						|
        return [self.doc.vocab.strings[self.stcls._sent[i].dep]
 | 
						|
                for i in range(self.stcls.length)]
 | 
						|
 | 
						|
    def predict(self):
 | 
						|
        self.parser.predict(self.stcls, &self.eg.c)
 | 
						|
        action = self.parser.moves.c[self.eg.c.guess]
 | 
						|
        return self.parser.moves.move_name(action.move, action.label)
 | 
						|
 | 
						|
    def transition(self, action_name):
 | 
						|
        moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
 | 
						|
        if action_name == '_':
 | 
						|
            action_name = self.predict()
 | 
						|
            action = self.parser.moves.lookup_transition(action_name)
 | 
						|
        elif action_name == 'L' or action_name == 'R':
 | 
						|
            self.predict()
 | 
						|
            move = moves[action_name]
 | 
						|
            clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
 | 
						|
                                 self.eg.c.nr_class)
 | 
						|
            action = self.parser.moves.c[clas]
 | 
						|
        else:
 | 
						|
            action = self.parser.moves.lookup_transition(action_name)
 | 
						|
        action.do(self.stcls, action.label)
 | 
						|
 | 
						|
    def finish(self):
 | 
						|
        if self.stcls.is_final():
 | 
						|
            self.parser.moves.finalize_state(self.stcls)
 | 
						|
        self.doc.set_parse(self.stcls._sent)
 | 
						|
 | 
						|
 | 
						|
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
 | 
						|
                       int nr_class) except -1:
 | 
						|
    cdef weight_t score = 0
 | 
						|
    cdef int mode = -1
 | 
						|
    cdef int i
 | 
						|
    for i in range(nr_class):
 | 
						|
        if actions[i].move == move and (mode == -1 or scores[i] >= score):
 | 
						|
            mode = i
 | 
						|
            score = scores[i]
 | 
						|
    return mode
 |