mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Add TextCatReduce.v1 This is a textcat classifier that pools the vectors generated by a tok2vec implementation and then applies a classifier to the pooled representation. Three reductions are supported for pooling: first, max, and mean. When multiple reductions are enabled, the reductions are concatenated before providing them to the classification layer. This model is a generalization of the TextCatCNN model, which only supports mean reductions and is a bit of a misnomer, because it can also be used with transformers. This change also reimplements TextCatCNN.v2 using the new TextCatReduce.v1 layer. * Doc fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fully specify `TextCatCNN` <-> `TextCatReduce` equivalence * Move TextCatCNN docs to legacy, in prep for moving to spacy-legacy * Add back a test for TextCatCNN.v2 * Replace TextCatCNN in pipe configurations and templates * Add an infobox to the `TextCatReduce` section with an `TextCatCNN` anchor * Add last reduction (`use_reduce_last`) * Remove non-working TextCatCNN Netlify redirect * Revert layer changes for the quickstart * Revert one more quickstart change * Remove unused import * Fix docstring * Fix setting name in error message --------- Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			289 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from functools import partial
 | 
						|
from typing import List, Optional, Tuple, cast
 | 
						|
 | 
						|
from thinc.api import (
 | 
						|
    Dropout,
 | 
						|
    LayerNorm,
 | 
						|
    Linear,
 | 
						|
    Logistic,
 | 
						|
    Maxout,
 | 
						|
    Model,
 | 
						|
    ParametricAttention,
 | 
						|
    Relu,
 | 
						|
    Softmax,
 | 
						|
    SparseLinear,
 | 
						|
    SparseLinear_v2,
 | 
						|
    chain,
 | 
						|
    clone,
 | 
						|
    concatenate,
 | 
						|
    list2ragged,
 | 
						|
    reduce_first,
 | 
						|
    reduce_last,
 | 
						|
    reduce_max,
 | 
						|
    reduce_mean,
 | 
						|
    reduce_sum,
 | 
						|
    residual,
 | 
						|
    resizable,
 | 
						|
    softmax_activation,
 | 
						|
    with_cpu,
 | 
						|
)
 | 
						|
from thinc.layers.chain import init as init_chain
 | 
						|
from thinc.layers.resizable import resize_linear_weighted, resize_model
 | 
						|
from thinc.types import ArrayXd, Floats2d
 | 
						|
 | 
						|
from ...attrs import ORTH
 | 
						|
from ...errors import Errors
 | 
						|
from ...tokens import Doc
 | 
						|
from ...util import registry
 | 
						|
from ..extract_ngrams import extract_ngrams
 | 
						|
from ..staticvectors import StaticVectors
 | 
						|
from .tok2vec import get_tok2vec_width
 | 
						|
 | 
						|
NEG_VALUE = -5000
 | 
						|
 | 
						|
 | 
						|
@registry.architectures("spacy.TextCatCNN.v2")
 | 
						|
def build_simple_cnn_text_classifier(
 | 
						|
    tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    """
 | 
						|
    Build a simple CNN text classifier, given a token-to-vector model as inputs.
 | 
						|
    If exclusive_classes=True, a softmax non-linearity is applied, so that the
 | 
						|
    outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
 | 
						|
    is applied instead, so that outputs are in the range [0, 1].
 | 
						|
    """
 | 
						|
    return build_reduce_text_classifier(
 | 
						|
        tok2vec=tok2vec,
 | 
						|
        exclusive_classes=exclusive_classes,
 | 
						|
        use_reduce_first=False,
 | 
						|
        use_reduce_last=False,
 | 
						|
        use_reduce_max=False,
 | 
						|
        use_reduce_mean=True,
 | 
						|
        nO=nO,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def resize_and_set_ref(model, new_nO, resizable_layer):
 | 
						|
    resizable_layer = resize_model(resizable_layer, new_nO)
 | 
						|
    model.set_ref("output_layer", resizable_layer.layers[0])
 | 
						|
    model.set_dim("nO", new_nO, force=True)
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures("spacy.TextCatBOW.v2")
 | 
						|
def build_bow_text_classifier(
 | 
						|
    exclusive_classes: bool,
 | 
						|
    ngram_size: int,
 | 
						|
    no_output_layer: bool,
 | 
						|
    nO: Optional[int] = None,
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    return _build_bow_text_classifier(
 | 
						|
        exclusive_classes=exclusive_classes,
 | 
						|
        ngram_size=ngram_size,
 | 
						|
        no_output_layer=no_output_layer,
 | 
						|
        nO=nO,
 | 
						|
        sparse_linear=SparseLinear(nO=nO),
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@registry.architectures("spacy.TextCatBOW.v3")
 | 
						|
def build_bow_text_classifier_v3(
 | 
						|
    exclusive_classes: bool,
 | 
						|
    ngram_size: int,
 | 
						|
    no_output_layer: bool,
 | 
						|
    length: int = 262144,
 | 
						|
    nO: Optional[int] = None,
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    if length < 1:
 | 
						|
        raise ValueError(Errors.E1056.format(length=length))
 | 
						|
 | 
						|
    # Find k such that 2**(k-1) < length <= 2**k.
 | 
						|
    length = 2 ** (length - 1).bit_length()
 | 
						|
 | 
						|
    return _build_bow_text_classifier(
 | 
						|
        exclusive_classes=exclusive_classes,
 | 
						|
        ngram_size=ngram_size,
 | 
						|
        no_output_layer=no_output_layer,
 | 
						|
        nO=nO,
 | 
						|
        sparse_linear=SparseLinear_v2(nO=nO, length=length),
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def _build_bow_text_classifier(
 | 
						|
    exclusive_classes: bool,
 | 
						|
    ngram_size: int,
 | 
						|
    no_output_layer: bool,
 | 
						|
    sparse_linear: Model[Tuple[ArrayXd, ArrayXd, ArrayXd], ArrayXd],
 | 
						|
    nO: Optional[int] = None,
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    fill_defaults = {"b": 0, "W": 0}
 | 
						|
    with Model.define_operators({">>": chain}):
 | 
						|
        output_layer = None
 | 
						|
        if not no_output_layer:
 | 
						|
            fill_defaults["b"] = NEG_VALUE
 | 
						|
            output_layer = softmax_activation() if exclusive_classes else Logistic()
 | 
						|
        resizable_layer: Model[Floats2d, Floats2d] = resizable(
 | 
						|
            sparse_linear,
 | 
						|
            resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
 | 
						|
        )
 | 
						|
        model = extract_ngrams(ngram_size, attr=ORTH) >> resizable_layer
 | 
						|
        model = with_cpu(model, model.ops)
 | 
						|
        if output_layer:
 | 
						|
            model = model >> with_cpu(output_layer, output_layer.ops)
 | 
						|
    if nO is not None:
 | 
						|
        model.set_dim("nO", cast(int, nO))
 | 
						|
    model.set_ref("output_layer", sparse_linear)
 | 
						|
    model.attrs["multi_label"] = not exclusive_classes
 | 
						|
    model.attrs["resize_output"] = partial(
 | 
						|
        resize_and_set_ref, resizable_layer=resizable_layer
 | 
						|
    )
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures("spacy.TextCatEnsemble.v2")
 | 
						|
def build_text_classifier_v2(
 | 
						|
    tok2vec: Model[List[Doc], List[Floats2d]],
 | 
						|
    linear_model: Model[List[Doc], Floats2d],
 | 
						|
    nO: Optional[int] = None,
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    exclusive_classes = not linear_model.attrs["multi_label"]
 | 
						|
    with Model.define_operators({">>": chain, "|": concatenate}):
 | 
						|
        width = tok2vec.maybe_get_dim("nO")
 | 
						|
        attention_layer = ParametricAttention(width)
 | 
						|
        maxout_layer = Maxout(nO=width, nI=width)
 | 
						|
        norm_layer = LayerNorm(nI=width)
 | 
						|
        cnn_model = (
 | 
						|
            tok2vec
 | 
						|
            >> list2ragged()
 | 
						|
            >> attention_layer
 | 
						|
            >> reduce_sum()
 | 
						|
            >> residual(maxout_layer >> norm_layer >> Dropout(0.0))
 | 
						|
        )
 | 
						|
 | 
						|
        nO_double = nO * 2 if nO else None
 | 
						|
        if exclusive_classes:
 | 
						|
            output_layer = Softmax(nO=nO, nI=nO_double)
 | 
						|
        else:
 | 
						|
            output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
 | 
						|
        model = (linear_model | cnn_model) >> output_layer
 | 
						|
        model.set_ref("tok2vec", tok2vec)
 | 
						|
    if model.has_dim("nO") is not False and nO is not None:
 | 
						|
        model.set_dim("nO", cast(int, nO))
 | 
						|
    model.set_ref("output_layer", linear_model.get_ref("output_layer"))
 | 
						|
    model.set_ref("attention_layer", attention_layer)
 | 
						|
    model.set_ref("maxout_layer", maxout_layer)
 | 
						|
    model.set_ref("norm_layer", norm_layer)
 | 
						|
    model.attrs["multi_label"] = not exclusive_classes
 | 
						|
 | 
						|
    model.init = init_ensemble_textcat  # type: ignore[assignment]
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def init_ensemble_textcat(model, X, Y) -> Model:
 | 
						|
    tok2vec_width = get_tok2vec_width(model)
 | 
						|
    model.get_ref("attention_layer").set_dim("nO", tok2vec_width)
 | 
						|
    model.get_ref("maxout_layer").set_dim("nO", tok2vec_width)
 | 
						|
    model.get_ref("maxout_layer").set_dim("nI", tok2vec_width)
 | 
						|
    model.get_ref("norm_layer").set_dim("nI", tok2vec_width)
 | 
						|
    model.get_ref("norm_layer").set_dim("nO", tok2vec_width)
 | 
						|
    init_chain(model, X, Y)
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures("spacy.TextCatLowData.v1")
 | 
						|
def build_text_classifier_lowdata(
 | 
						|
    width: int, dropout: Optional[float], nO: Optional[int] = None
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    # Don't document this yet, I'm not sure it's right.
 | 
						|
    # Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
 | 
						|
    with Model.define_operators({">>": chain, "**": clone}):
 | 
						|
        model = (
 | 
						|
            StaticVectors(width)
 | 
						|
            >> list2ragged()
 | 
						|
            >> ParametricAttention(width)
 | 
						|
            >> reduce_sum()
 | 
						|
            >> residual(Relu(width, width)) ** 2
 | 
						|
            >> Linear(nO, width)
 | 
						|
        )
 | 
						|
        if dropout:
 | 
						|
            model = model >> Dropout(dropout)
 | 
						|
        model = model >> Logistic()
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures("spacy.TextCatReduce.v1")
 | 
						|
def build_reduce_text_classifier(
 | 
						|
    tok2vec: Model,
 | 
						|
    exclusive_classes: bool,
 | 
						|
    use_reduce_first: bool,
 | 
						|
    use_reduce_last: bool,
 | 
						|
    use_reduce_max: bool,
 | 
						|
    use_reduce_mean: bool,
 | 
						|
    nO: Optional[int] = None,
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    """Build a model that classifies pooled `Doc` representations.
 | 
						|
 | 
						|
    Pooling is performed using reductions. Reductions are concatenated when
 | 
						|
    multiple reductions are used.
 | 
						|
 | 
						|
    tok2vec (Model): the tok2vec layer to pool over.
 | 
						|
    exclusive_classes (bool): Whether or not classes are mutually exclusive.
 | 
						|
    use_reduce_first (bool): Pool by using the hidden representation of the
 | 
						|
        first token of a `Doc`.
 | 
						|
    use_reduce_last (bool): Pool by using the hidden representation of the
 | 
						|
        last token of a `Doc`.
 | 
						|
    use_reduce_max (bool): Pool by taking the maximum values of the hidden
 | 
						|
        representations of a `Doc`.
 | 
						|
    use_reduce_mean (bool): Pool by taking the mean of all hidden
 | 
						|
        representations of a `Doc`.
 | 
						|
    nO (Optional[int]): Number of classes.
 | 
						|
    """
 | 
						|
 | 
						|
    fill_defaults = {"b": 0, "W": 0}
 | 
						|
    reductions = []
 | 
						|
    if use_reduce_first:
 | 
						|
        reductions.append(reduce_first())
 | 
						|
    if use_reduce_last:
 | 
						|
        reductions.append(reduce_last())
 | 
						|
    if use_reduce_max:
 | 
						|
        reductions.append(reduce_max())
 | 
						|
    if use_reduce_mean:
 | 
						|
        reductions.append(reduce_mean())
 | 
						|
 | 
						|
    if not len(reductions):
 | 
						|
        raise ValueError(Errors.E1057)
 | 
						|
 | 
						|
    with Model.define_operators({">>": chain}):
 | 
						|
        cnn = tok2vec >> list2ragged() >> concatenate(*reductions)
 | 
						|
        nO_tok2vec = tok2vec.maybe_get_dim("nO")
 | 
						|
        nI = nO_tok2vec * len(reductions) if nO_tok2vec is not None else None
 | 
						|
        if exclusive_classes:
 | 
						|
            output_layer = Softmax(nO=nO, nI=nI)
 | 
						|
            fill_defaults["b"] = NEG_VALUE
 | 
						|
            resizable_layer: Model = resizable(
 | 
						|
                output_layer,
 | 
						|
                resize_layer=partial(
 | 
						|
                    resize_linear_weighted, fill_defaults=fill_defaults
 | 
						|
                ),
 | 
						|
            )
 | 
						|
            model = cnn >> resizable_layer
 | 
						|
        else:
 | 
						|
            output_layer = Linear(nO=nO, nI=nI)
 | 
						|
            resizable_layer = resizable(
 | 
						|
                output_layer,
 | 
						|
                resize_layer=partial(
 | 
						|
                    resize_linear_weighted, fill_defaults=fill_defaults
 | 
						|
                ),
 | 
						|
            )
 | 
						|
            model = cnn >> resizable_layer >> Logistic()
 | 
						|
        model.set_ref("output_layer", output_layer)
 | 
						|
        model.attrs["resize_output"] = partial(
 | 
						|
            resize_and_set_ref,
 | 
						|
            resizable_layer=resizable_layer,
 | 
						|
        )
 | 
						|
    model.set_ref("tok2vec", tok2vec)
 | 
						|
    if nO is not None:
 | 
						|
        model.set_dim("nO", cast(int, nO))
 | 
						|
    model.attrs["multi_label"] = not exclusive_classes
 | 
						|
    return model
 |