mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			169 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pathlib import Path
 | 
						|
from wasabi import msg
 | 
						|
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
 | 
						|
 | 
						|
from ._util import Arg, Opt, debug_cli
 | 
						|
from .. import util
 | 
						|
from ..lang.en import English
 | 
						|
 | 
						|
 | 
						|
@debug_cli.command("model")
 | 
						|
def debug_model_cli(
 | 
						|
    # fmt: off
 | 
						|
    config_path: Path = Arg(..., help="Path to config file", exists=True),
 | 
						|
    layers: str = Opt("", "--layers", "-l", help="Comma-separated names of pipeline components to train"),
 | 
						|
    dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"),
 | 
						|
    parameters: bool = Opt(False, "--parameters", "-PAR", help="Show parameters"),
 | 
						|
    gradients: bool = Opt(False, "--gradients", "-GRAD", help="Show gradients"),
 | 
						|
    attributes: bool = Opt(False, "--attributes", "-ATTR", help="Show attributes"),
 | 
						|
    P0: bool = Opt(False, "--print-step0", "-P0", help="Print model before training"),
 | 
						|
    P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
 | 
						|
    P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
 | 
						|
    P3: bool = Opt(True, "--print-step3", "-P3", help="Print final predictions"),
 | 
						|
    use_gpu: int = Opt(-1, "--use-gpu", "-g", help="Use GPU"),
 | 
						|
    seed: int = Opt(None, "--seed", "-s", help="Use GPU"),
 | 
						|
    # fmt: on
 | 
						|
):
 | 
						|
    """
 | 
						|
    Analyze a Thinc model implementation. Includes checks for internal structure
 | 
						|
    and activations during training.
 | 
						|
    """
 | 
						|
    print_settings = {
 | 
						|
        "dimensions": dimensions,
 | 
						|
        "parameters": parameters,
 | 
						|
        "gradients": gradients,
 | 
						|
        "attributes": attributes,
 | 
						|
        "layers": [int(x.strip()) for x in layers.split(",")] if layers else [],
 | 
						|
        "print_before_training": P0,
 | 
						|
        "print_after_init": P1,
 | 
						|
        "print_after_training": P2,
 | 
						|
        "print_prediction": P3,
 | 
						|
    }
 | 
						|
 | 
						|
    if seed is not None:
 | 
						|
        msg.info(f"Fixing random seed: {seed}")
 | 
						|
        fix_random_seed(seed)
 | 
						|
    if use_gpu >= 0:
 | 
						|
        msg.info(f"Using GPU: {use_gpu}")
 | 
						|
        require_gpu(use_gpu)
 | 
						|
    else:
 | 
						|
        msg.info(f"Using CPU")
 | 
						|
 | 
						|
    debug_model(
 | 
						|
        config_path, print_settings=print_settings,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def debug_model(config_path: Path, *, print_settings=None):
 | 
						|
    if print_settings is None:
 | 
						|
        print_settings = {}
 | 
						|
 | 
						|
    model = util.load_config(config_path, create_objects=True)["model"]
 | 
						|
 | 
						|
    # STEP 0: Printing before training
 | 
						|
    msg.info(f"Analysing model with ID {model.id}")
 | 
						|
    if print_settings.get("print_before_training"):
 | 
						|
        msg.info(f"Before training:")
 | 
						|
        _print_model(model, print_settings)
 | 
						|
 | 
						|
    # STEP 1: Initializing the model and printing again
 | 
						|
    model.initialize(X=_get_docs(), Y=_get_output(model.ops.xp))
 | 
						|
    if print_settings.get("print_after_init"):
 | 
						|
        msg.info(f"After initialization:")
 | 
						|
        _print_model(model, print_settings)
 | 
						|
 | 
						|
    # STEP 2: Updating the model and printing again
 | 
						|
    optimizer = Adam(0.001)
 | 
						|
    set_dropout_rate(model, 0.2)
 | 
						|
    for e in range(3):
 | 
						|
        Y, get_dX = model.begin_update(_get_docs())
 | 
						|
        dY = get_gradient(model, Y)
 | 
						|
        get_dX(dY)
 | 
						|
        model.finish_update(optimizer)
 | 
						|
    if print_settings.get("print_after_training"):
 | 
						|
        msg.info(f"After training:")
 | 
						|
        _print_model(model, print_settings)
 | 
						|
 | 
						|
    # STEP 3: the final prediction
 | 
						|
    prediction = model.predict(_get_docs())
 | 
						|
    if print_settings.get("print_prediction"):
 | 
						|
        msg.info(f"Prediction:", str(prediction))
 | 
						|
 | 
						|
 | 
						|
def get_gradient(model, Y):
 | 
						|
    goldY = _get_output(model.ops.xp)
 | 
						|
    return Y - goldY
 | 
						|
 | 
						|
 | 
						|
def _sentences():
 | 
						|
    return [
 | 
						|
        "Apple is looking at buying U.K. startup for $1 billion",
 | 
						|
        "Autonomous cars shift insurance liability toward manufacturers",
 | 
						|
        "San Francisco considers banning sidewalk delivery robots",
 | 
						|
        "London is a big city in the United Kingdom.",
 | 
						|
    ]
 | 
						|
 | 
						|
 | 
						|
def _get_docs():
 | 
						|
    nlp = English()
 | 
						|
    return list(nlp.pipe(_sentences()))
 | 
						|
 | 
						|
 | 
						|
def _get_output(xp):
 | 
						|
    return xp.asarray(
 | 
						|
        [
 | 
						|
            xp.asarray([i + 10, i + 20, i + 30], dtype="float32")
 | 
						|
            for i, _ in enumerate(_get_docs())
 | 
						|
        ]
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def _print_model(model, print_settings):
 | 
						|
    layers = print_settings.get("layers", "")
 | 
						|
    parameters = print_settings.get("parameters", False)
 | 
						|
    dimensions = print_settings.get("dimensions", False)
 | 
						|
    gradients = print_settings.get("gradients", False)
 | 
						|
    attributes = print_settings.get("attributes", False)
 | 
						|
 | 
						|
    for i, node in enumerate(model.walk()):
 | 
						|
        if not layers or i in layers:
 | 
						|
            msg.info(f"Layer {i}: model ID {node.id}: '{node.name}'")
 | 
						|
 | 
						|
            if dimensions:
 | 
						|
                for name in node.dim_names:
 | 
						|
                    if node.has_dim(name):
 | 
						|
                        msg.info(f" - dim {name}: {node.get_dim(name)}")
 | 
						|
                    else:
 | 
						|
                        msg.info(f" - dim {name}: {node.has_dim(name)}")
 | 
						|
 | 
						|
            if parameters:
 | 
						|
                for name in node.param_names:
 | 
						|
                    if node.has_param(name):
 | 
						|
                        print_value = _print_matrix(node.get_param(name))
 | 
						|
                        msg.info(f" - param {name}: {print_value}")
 | 
						|
                    else:
 | 
						|
                        msg.info(f" - param {name}: {node.has_param(name)}")
 | 
						|
            if gradients:
 | 
						|
                for name in node.param_names:
 | 
						|
                    if node.has_grad(name):
 | 
						|
                        print_value = _print_matrix(node.get_grad(name))
 | 
						|
                        msg.info(f" - grad {name}: {print_value}")
 | 
						|
                    else:
 | 
						|
                        msg.info(f" - grad {name}: {node.has_grad(name)}")
 | 
						|
            if attributes:
 | 
						|
                attrs = node.attrs
 | 
						|
                for name, value in attrs.items():
 | 
						|
                    msg.info(f" - attr {name}: {value}")
 | 
						|
 | 
						|
 | 
						|
def _print_matrix(value):
 | 
						|
    if value is None or isinstance(value, bool):
 | 
						|
        return value
 | 
						|
    result = str(value.shape) + " - sample: "
 | 
						|
    sample_matrix = value
 | 
						|
    for d in range(value.ndim - 1):
 | 
						|
        sample_matrix = sample_matrix[0]
 | 
						|
    sample_matrix = sample_matrix[0:5]
 | 
						|
    result = result + str(sample_matrix)
 | 
						|
    return result
 |