mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			183 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Optional, List, Dict
 | 
						|
from timeit import default_timer as timer
 | 
						|
from wasabi import Printer
 | 
						|
from pathlib import Path
 | 
						|
import re
 | 
						|
import srsly
 | 
						|
from thinc.api import require_gpu, fix_random_seed
 | 
						|
 | 
						|
from ..gold import Corpus
 | 
						|
from ..tokens import Doc
 | 
						|
from ._util import app, Arg, Opt
 | 
						|
from ..scorer import Scorer
 | 
						|
from .. import util
 | 
						|
from .. import displacy
 | 
						|
 | 
						|
 | 
						|
@app.command("evaluate")
 | 
						|
def evaluate_cli(
 | 
						|
    # fmt: off
 | 
						|
    model: str = Arg(..., help="Model name or path"),
 | 
						|
    data_path: Path = Arg(..., help="Location of JSON-formatted evaluation data", exists=True),
 | 
						|
    output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False),
 | 
						|
    gpu_id: int = Opt(-1, "--gpu-id", "-g", help="Use GPU"),
 | 
						|
    gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
 | 
						|
    displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
 | 
						|
    displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
 | 
						|
    # fmt: on
 | 
						|
):
 | 
						|
    """
 | 
						|
    Evaluate a model. To render a sample of parses in a HTML file, set an
 | 
						|
    output directory as the displacy_path argument.
 | 
						|
    """
 | 
						|
    evaluate(
 | 
						|
        model,
 | 
						|
        data_path,
 | 
						|
        output=output,
 | 
						|
        gpu_id=gpu_id,
 | 
						|
        gold_preproc=gold_preproc,
 | 
						|
        displacy_path=displacy_path,
 | 
						|
        displacy_limit=displacy_limit,
 | 
						|
        silent=False,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def evaluate(
 | 
						|
    model: str,
 | 
						|
    data_path: Path,
 | 
						|
    output: Optional[Path],
 | 
						|
    gpu_id: int = -1,
 | 
						|
    gold_preproc: bool = False,
 | 
						|
    displacy_path: Optional[Path] = None,
 | 
						|
    displacy_limit: int = 25,
 | 
						|
    silent: bool = True,
 | 
						|
) -> Scorer:
 | 
						|
    msg = Printer(no_print=silent, pretty=not silent)
 | 
						|
    fix_random_seed()
 | 
						|
    if gpu_id >= 0:
 | 
						|
        require_gpu(gpu_id)
 | 
						|
    util.set_env_log(False)
 | 
						|
    data_path = util.ensure_path(data_path)
 | 
						|
    output_path = util.ensure_path(output)
 | 
						|
    displacy_path = util.ensure_path(displacy_path)
 | 
						|
    if not data_path.exists():
 | 
						|
        msg.fail("Evaluation data not found", data_path, exits=1)
 | 
						|
    if displacy_path and not displacy_path.exists():
 | 
						|
        msg.fail("Visualization output directory not found", displacy_path, exits=1)
 | 
						|
    corpus = Corpus(data_path, data_path)
 | 
						|
    nlp = util.load_model(model)
 | 
						|
    dev_dataset = list(corpus.dev_dataset(nlp, gold_preproc=gold_preproc))
 | 
						|
    begin = timer()
 | 
						|
    scorer = nlp.evaluate(dev_dataset, verbose=False)
 | 
						|
    end = timer()
 | 
						|
    nwords = sum(len(ex.predicted) for ex in dev_dataset)
 | 
						|
    results = {
 | 
						|
        "Time": f"{end - begin:.2f} s",
 | 
						|
        "Words": nwords,
 | 
						|
        "Words/s": f"{nwords / (end - begin):.0f}",
 | 
						|
        "TOK": f"{scorer.token_acc:.2f}",
 | 
						|
        "TAG": f"{scorer.tags_acc:.2f}",
 | 
						|
        "POS": f"{scorer.pos_acc:.2f}",
 | 
						|
        "MORPH": f"{scorer.morphs_acc:.2f}",
 | 
						|
        "UAS": f"{scorer.uas:.2f}",
 | 
						|
        "LAS": f"{scorer.las:.2f}",
 | 
						|
        "NER P": f"{scorer.ents_p:.2f}",
 | 
						|
        "NER R": f"{scorer.ents_r:.2f}",
 | 
						|
        "NER F": f"{scorer.ents_f:.2f}",
 | 
						|
        "Textcat AUC": f"{scorer.textcat_auc:.2f}",
 | 
						|
        "Textcat F": f"{scorer.textcat_f:.2f}",
 | 
						|
        "Sent P": f"{scorer.sent_p:.2f}",
 | 
						|
        "Sent R": f"{scorer.sent_r:.2f}",
 | 
						|
        "Sent F": f"{scorer.sent_f:.2f}",
 | 
						|
    }
 | 
						|
    data = {re.sub(r"[\s/]", "_", k.lower()): v for k, v in results.items()}
 | 
						|
 | 
						|
    msg.table(results, title="Results")
 | 
						|
 | 
						|
    if scorer.ents_per_type:
 | 
						|
        data["ents_per_type"] = scorer.ents_per_type
 | 
						|
        print_ents_per_type(msg, scorer.ents_per_type)
 | 
						|
    if scorer.textcats_f_per_cat:
 | 
						|
        data["textcats_f_per_cat"] = scorer.textcats_f_per_cat
 | 
						|
        print_textcats_f_per_cat(msg, scorer.textcats_f_per_cat)
 | 
						|
    if scorer.textcats_auc_per_cat:
 | 
						|
        data["textcats_auc_per_cat"] = scorer.textcats_auc_per_cat
 | 
						|
        print_textcats_auc_per_cat(msg, scorer.textcats_auc_per_cat)
 | 
						|
 | 
						|
    if displacy_path:
 | 
						|
        docs = [ex.predicted for ex in dev_dataset]
 | 
						|
        render_deps = "parser" in nlp.meta.get("pipeline", [])
 | 
						|
        render_ents = "ner" in nlp.meta.get("pipeline", [])
 | 
						|
        render_parses(
 | 
						|
            docs,
 | 
						|
            displacy_path,
 | 
						|
            model_name=model,
 | 
						|
            limit=displacy_limit,
 | 
						|
            deps=render_deps,
 | 
						|
            ents=render_ents,
 | 
						|
        )
 | 
						|
        msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path)
 | 
						|
 | 
						|
    if output_path is not None:
 | 
						|
        srsly.write_json(output_path, data)
 | 
						|
        msg.good(f"Saved results to {output_path}")
 | 
						|
    return data
 | 
						|
 | 
						|
 | 
						|
def render_parses(
 | 
						|
    docs: List[Doc],
 | 
						|
    output_path: Path,
 | 
						|
    model_name: str = "",
 | 
						|
    limit: int = 250,
 | 
						|
    deps: bool = True,
 | 
						|
    ents: bool = True,
 | 
						|
):
 | 
						|
    docs[0].user_data["title"] = model_name
 | 
						|
    if ents:
 | 
						|
        html = displacy.render(docs[:limit], style="ent", page=True)
 | 
						|
        with (output_path / "entities.html").open("w", encoding="utf8") as file_:
 | 
						|
            file_.write(html)
 | 
						|
    if deps:
 | 
						|
        html = displacy.render(
 | 
						|
            docs[:limit], style="dep", page=True, options={"compact": True}
 | 
						|
        )
 | 
						|
        with (output_path / "parses.html").open("w", encoding="utf8") as file_:
 | 
						|
            file_.write(html)
 | 
						|
 | 
						|
 | 
						|
def print_ents_per_type(msg: Printer, scores: Dict[str, Dict[str, float]]) -> None:
 | 
						|
    data = [
 | 
						|
        (k, f"{v['p']:.2f}", f"{v['r']:.2f}", f"{v['f']:.2f}")
 | 
						|
        for k, v in scores.items()
 | 
						|
    ]
 | 
						|
    msg.table(
 | 
						|
        data,
 | 
						|
        header=("", "P", "R", "F"),
 | 
						|
        aligns=("l", "r", "r", "r"),
 | 
						|
        title="NER (per type)",
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def print_textcats_f_per_cat(msg: Printer, scores: Dict[str, Dict[str, float]]) -> None:
 | 
						|
    data = [
 | 
						|
        (k, f"{v['p']:.2f}", f"{v['r']:.2f}", f"{v['f']:.2f}")
 | 
						|
        for k, v in scores.items()
 | 
						|
    ]
 | 
						|
    msg.table(
 | 
						|
        data,
 | 
						|
        header=("", "P", "R", "F"),
 | 
						|
        aligns=("l", "r", "r", "r"),
 | 
						|
        title="Textcat F (per type)",
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def print_textcats_auc_per_cat(
 | 
						|
    msg: Printer, scores: Dict[str, Dict[str, float]]
 | 
						|
) -> None:
 | 
						|
    msg.table(
 | 
						|
        [(k, f"{v['roc_auc_score']:.2f}") for k, v in scores.items()],
 | 
						|
        header=("", "ROC AUC"),
 | 
						|
        aligns=("l", "r"),
 | 
						|
        title="Textcat ROC AUC (per label)",
 | 
						|
    )
 |