mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Update get_loss for senter Update `SentenceRecognizer.get_loss` to keep it similar to `Tagger`. * Update get_loss for morphologizer Update `Morphologizer.get_loss` to keep it similar to `Tagger`.
		
			
				
	
	
		
			156 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True, profile=True
 | 
						|
cimport numpy as np
 | 
						|
 | 
						|
import numpy
 | 
						|
import srsly
 | 
						|
from thinc.api import SequenceCategoricalCrossentropy
 | 
						|
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..vocab cimport Vocab
 | 
						|
from ..morphology cimport Morphology
 | 
						|
from ..parts_of_speech import IDS as POS_IDS
 | 
						|
from ..symbols import POS
 | 
						|
 | 
						|
from .. import util
 | 
						|
from ..language import component
 | 
						|
from ..util import link_vectors_to_models, create_default_optimizer
 | 
						|
from ..errors import Errors, TempErrors
 | 
						|
from .pipes import Tagger, _load_cfg
 | 
						|
from .. import util
 | 
						|
from .defaults import default_morphologizer
 | 
						|
 | 
						|
 | 
						|
@component("morphologizer", assigns=["token.morph", "token.pos"], default_model=default_morphologizer)
 | 
						|
class Morphologizer(Tagger):
 | 
						|
 | 
						|
    def __init__(self, vocab, model, **cfg):
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self._rehearsal_model = None
 | 
						|
        self.cfg = dict(sorted(cfg.items()))
 | 
						|
        self.cfg.setdefault("labels", {})
 | 
						|
        self.cfg.setdefault("morph_pos", {})
 | 
						|
 | 
						|
    @property
 | 
						|
    def labels(self):
 | 
						|
        return tuple(self.cfg["labels"].keys())
 | 
						|
 | 
						|
    def add_label(self, label):
 | 
						|
        if not isinstance(label, str):
 | 
						|
            raise ValueError(Errors.E187)
 | 
						|
        if label in self.labels:
 | 
						|
            return 0
 | 
						|
        morph = Morphology.feats_to_dict(label)
 | 
						|
        norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
 | 
						|
        pos = morph.get("POS", "")
 | 
						|
        if norm_morph_pos not in self.cfg["labels"]:
 | 
						|
            self.cfg["labels"][norm_morph_pos] = norm_morph_pos
 | 
						|
            self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
 | 
						|
        return 1
 | 
						|
 | 
						|
    def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None,
 | 
						|
                       **kwargs):
 | 
						|
        for example in get_examples():
 | 
						|
            for i, token in enumerate(example.reference):
 | 
						|
                pos = token.pos_
 | 
						|
                morph = token.morph
 | 
						|
                norm_morph = self.vocab.strings[self.vocab.morphology.add(morph)]
 | 
						|
                if pos:
 | 
						|
                    morph["POS"] = pos
 | 
						|
                norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
 | 
						|
                if norm_morph_pos not in self.cfg["labels"]:
 | 
						|
                    self.cfg["labels"][norm_morph_pos] = norm_morph
 | 
						|
                    self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
 | 
						|
        self.set_output(len(self.labels))
 | 
						|
        self.model.initialize()
 | 
						|
        link_vectors_to_models(self.vocab)
 | 
						|
        if sgd is None:
 | 
						|
            sgd = self.create_optimizer()
 | 
						|
        return sgd
 | 
						|
 | 
						|
    def set_annotations(self, docs, batch_tag_ids):
 | 
						|
        if isinstance(docs, Doc):
 | 
						|
            docs = [docs]
 | 
						|
        cdef Doc doc
 | 
						|
        cdef Vocab vocab = self.vocab
 | 
						|
        for i, doc in enumerate(docs):
 | 
						|
            doc_tag_ids = batch_tag_ids[i]
 | 
						|
            if hasattr(doc_tag_ids, "get"):
 | 
						|
                doc_tag_ids = doc_tag_ids.get()
 | 
						|
            for j, tag_id in enumerate(doc_tag_ids):
 | 
						|
                morph = self.labels[tag_id]
 | 
						|
                doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels"][morph])
 | 
						|
                doc.c[j].pos = self.cfg["morph_pos"][morph]
 | 
						|
 | 
						|
            doc.is_morphed = True
 | 
						|
 | 
						|
    def get_loss(self, examples, scores):
 | 
						|
        loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
 | 
						|
        truths = []
 | 
						|
        for eg in examples:
 | 
						|
            eg_truths = []
 | 
						|
            pos_tags = eg.get_aligned("POS", as_string=True)
 | 
						|
            morphs = eg.get_aligned("MORPH", as_string=True)
 | 
						|
            for i in range(len(morphs)):
 | 
						|
                pos = pos_tags[i]
 | 
						|
                morph = morphs[i]
 | 
						|
                feats = Morphology.feats_to_dict(morph)
 | 
						|
                if pos:
 | 
						|
                    feats["POS"] = pos
 | 
						|
                if len(feats) > 0:
 | 
						|
                    morph = self.vocab.strings[self.vocab.morphology.add(feats)]
 | 
						|
                if morph == "":
 | 
						|
                    morph = Morphology.EMPTY_MORPH
 | 
						|
                eg_truths.append(morph)
 | 
						|
            truths.append(eg_truths)
 | 
						|
        d_scores, loss = loss_func(scores, truths)
 | 
						|
        if self.model.ops.xp.isnan(loss):
 | 
						|
            raise ValueError("nan value when computing loss")
 | 
						|
        return float(loss), d_scores
 | 
						|
 | 
						|
    def to_bytes(self, exclude=tuple()):
 | 
						|
        serialize = {}
 | 
						|
        serialize["model"] = self.model.to_bytes
 | 
						|
        serialize["vocab"] = self.vocab.to_bytes
 | 
						|
        serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
 | 
						|
        return util.to_bytes(serialize, exclude)
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data, exclude=tuple()):
 | 
						|
        def load_model(b):
 | 
						|
            try:
 | 
						|
                self.model.from_bytes(b)
 | 
						|
            except AttributeError:
 | 
						|
                raise ValueError(Errors.E149)
 | 
						|
 | 
						|
        deserialize = {
 | 
						|
            "vocab": lambda b: self.vocab.from_bytes(b),
 | 
						|
            "cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
 | 
						|
            "model": lambda b: load_model(b),
 | 
						|
        }
 | 
						|
        util.from_bytes(bytes_data, deserialize, exclude)
 | 
						|
        return self
 | 
						|
 | 
						|
    def to_disk(self, path, exclude=tuple()):
 | 
						|
        serialize = {
 | 
						|
            "vocab": lambda p: self.vocab.to_disk(p),
 | 
						|
            "model": lambda p: p.open("wb").write(self.model.to_bytes()),
 | 
						|
            "cfg": lambda p: srsly.write_json(p, self.cfg),
 | 
						|
        }
 | 
						|
        util.to_disk(path, serialize, exclude)
 | 
						|
 | 
						|
    def from_disk(self, path, exclude=tuple()):
 | 
						|
        def load_model(p):
 | 
						|
            with p.open("rb") as file_:
 | 
						|
                try:
 | 
						|
                    self.model.from_bytes(file_.read())
 | 
						|
                except AttributeError:
 | 
						|
                    raise ValueError(Errors.E149)
 | 
						|
 | 
						|
        deserialize = {
 | 
						|
            "vocab": lambda p: self.vocab.from_disk(p),
 | 
						|
            "cfg": lambda p: self.cfg.update(_load_cfg(p)),
 | 
						|
            "model": load_model,
 | 
						|
        }
 | 
						|
        util.from_disk(path, deserialize, exclude)
 | 
						|
        return self
 |