mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 05:54:11 +03:00
8fe7bdd0fa
* Fix typo in rule-based matching docs * Improve token pattern checking without validation Add more detailed token pattern checks without full JSON pattern validation and provide more detailed error messages. Addresses #4070 (also related: #4063, #4100). * Check whether top-level attributes in patterns and attr for PhraseMatcher are in token pattern schema * Check whether attribute value types are supported in general (as opposed to per attribute with full validation) * Report various internal error types (OverflowError, AttributeError, KeyError) as ValueError with standard error messages * Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS, LEMMA, and DEP * Add error messages with relevant details on how to use validate=True or nlp() instead of nlp.make_doc() * Support attr=TEXT for PhraseMatcher * Add NORM to schema * Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler * Remove unnecessary .keys() * Rephrase error messages * Add another type check to Matcher Add another type check to Matcher for more understandable error messages in some rare cases. * Support phrase_matcher_attr=TEXT for EntityRuler * Don't use spacy.errors in examples and bin scripts * Fix error code * Auto-format Also try get Azure pipelines to finally start a build :( * Update errors.py Co-authored-by: Ines Montani <ines@ines.io> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
76 lines
2.7 KiB
Python
76 lines
2.7 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import pytest
|
|
from spacy.matcher import Matcher
|
|
from spacy.matcher._schemas import TOKEN_PATTERN_SCHEMA
|
|
from spacy.errors import MatchPatternError
|
|
from spacy.util import get_json_validator, validate_json
|
|
|
|
# (pattern, num errors with validation, num errors identified with minimal
|
|
# checks)
|
|
TEST_PATTERNS = [
|
|
# Bad patterns flagged in all cases
|
|
([{"XX": "foo"}], 1, 1),
|
|
([{"LENGTH": "2", "TEXT": 2}, {"LOWER": "test"}], 2, 1),
|
|
([{"IS_ALPHA": {"==": True}}, {"LIKE_NUM": None}], 2, 1),
|
|
([{"IS_PUNCT": True, "OP": "$"}], 1, 1),
|
|
([{"IS_DIGIT": -1}], 1, 1),
|
|
([{"ORTH": -1}], 1, 1),
|
|
([{"_": "foo"}], 1, 1),
|
|
('[{"TEXT": "foo"}, {"LOWER": "bar"}]', 1, 1),
|
|
([1, 2, 3], 3, 1),
|
|
# Bad patterns flagged outside of Matcher
|
|
([{"_": {"foo": "bar", "baz": {"IN": "foo"}}}], 1, 0),
|
|
# Bad patterns not flagged with minimal checks
|
|
([{"LENGTH": {"IN": [1, 2, "3"]}}, {"POS": {"IN": "VERB"}}], 2, 0),
|
|
([{"LENGTH": {"VALUE": 5}}], 1, 0),
|
|
([{"TEXT": {"VALUE": "foo"}}], 1, 0),
|
|
# Good patterns
|
|
([{"TEXT": "foo"}, {"LOWER": "bar"}], 0, 0),
|
|
([{"LEMMA": {"IN": ["love", "like"]}}, {"POS": "DET", "OP": "?"}], 0, 0),
|
|
([{"LIKE_NUM": True, "LENGTH": {">=": 5}}], 0, 0),
|
|
([{"LOWER": {"REGEX": "^X", "NOT_IN": ["XXX", "XY"]}}], 0, 0),
|
|
([{"NORM": "a"}, {"POS": {"IN": ["NOUN"]}}], 0, 0),
|
|
([{"_": {"foo": {"NOT_IN": ["bar", "baz"]}, "a": 5, "b": {">": 10}}}], 0, 0),
|
|
]
|
|
|
|
XFAIL_TEST_PATTERNS = [([{"orth": "foo"}], 0, 0)]
|
|
|
|
|
|
@pytest.fixture
|
|
def validator():
|
|
return get_json_validator(TOKEN_PATTERN_SCHEMA)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"pattern", [[{"XX": "y"}, {"LENGTH": "2"}, {"TEXT": {"IN": 5}}]]
|
|
)
|
|
def test_matcher_pattern_validation(en_vocab, pattern):
|
|
matcher = Matcher(en_vocab, validate=True)
|
|
with pytest.raises(MatchPatternError):
|
|
matcher.add("TEST", None, pattern)
|
|
|
|
|
|
@pytest.mark.parametrize("pattern,n_errors,_", TEST_PATTERNS)
|
|
def test_pattern_validation(validator, pattern, n_errors, _):
|
|
errors = validate_json(pattern, validator)
|
|
assert len(errors) == n_errors
|
|
|
|
|
|
@pytest.mark.xfail
|
|
@pytest.mark.parametrize("pattern,n_errors,_", XFAIL_TEST_PATTERNS)
|
|
def test_xfail_pattern_validation(validator, pattern, n_errors, _):
|
|
errors = validate_json(pattern, validator)
|
|
assert len(errors) == n_errors
|
|
|
|
|
|
@pytest.mark.parametrize("pattern,n_errors,n_min_errors", TEST_PATTERNS)
|
|
def test_minimal_pattern_validation(en_vocab, pattern, n_errors, n_min_errors):
|
|
matcher = Matcher(en_vocab)
|
|
if n_min_errors > 0:
|
|
with pytest.raises(ValueError):
|
|
matcher.add("TEST", None, pattern)
|
|
elif n_errors == 0:
|
|
matcher.add("TEST", None, pattern)
|