mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 06:16:33 +03:00
343 lines
12 KiB
Python
343 lines
12 KiB
Python
from typing import Optional, Union, Dict, Any, Callable
|
|
from pathlib import Path
|
|
import srsly
|
|
from collections import namedtuple
|
|
from thinc.api import Model
|
|
import re
|
|
|
|
from .stop_words import STOP_WORDS
|
|
from .syntax_iterators import SYNTAX_ITERATORS
|
|
from .tag_map import TAG_MAP
|
|
from .tag_orth_map import TAG_ORTH_MAP
|
|
from .tag_bigram_map import TAG_BIGRAM_MAP
|
|
from ...errors import Errors
|
|
from ...language import Language, BaseDefaults
|
|
from ...pipeline import Morphologizer
|
|
from ...pipeline.morphologizer import DEFAULT_MORPH_MODEL
|
|
from ...scorer import Scorer
|
|
from ...symbols import POS
|
|
from ...tokens import Doc, MorphAnalysis
|
|
from ...training import validate_examples
|
|
from ...util import DummyTokenizer, registry, load_config_from_str
|
|
from ...vocab import Vocab
|
|
from ... import util
|
|
|
|
|
|
DEFAULT_CONFIG = """
|
|
[nlp]
|
|
|
|
[nlp.tokenizer]
|
|
@tokenizers = "spacy.ja.JapaneseTokenizer"
|
|
split_mode = null
|
|
"""
|
|
|
|
|
|
@registry.tokenizers("spacy.ja.JapaneseTokenizer")
|
|
def create_tokenizer(split_mode: Optional[str] = None):
|
|
def japanese_tokenizer_factory(nlp):
|
|
return JapaneseTokenizer(nlp.vocab, split_mode=split_mode)
|
|
|
|
return japanese_tokenizer_factory
|
|
|
|
|
|
class JapaneseTokenizer(DummyTokenizer):
|
|
def __init__(self, vocab: Vocab, split_mode: Optional[str] = None) -> None:
|
|
self.vocab = vocab
|
|
self.split_mode = split_mode
|
|
self.tokenizer = try_sudachi_import(self.split_mode)
|
|
# if we're using split mode A we don't need subtokens
|
|
self.need_subtokens = not (split_mode is None or split_mode == "A")
|
|
|
|
def __reduce__(self):
|
|
return JapaneseTokenizer, (self.vocab, self.split_mode)
|
|
|
|
def __call__(self, text: str) -> Doc:
|
|
# convert sudachipy.morpheme.Morpheme to DetailedToken and merge continuous spaces
|
|
sudachipy_tokens = self.tokenizer.tokenize(text)
|
|
dtokens = self._get_dtokens(sudachipy_tokens)
|
|
dtokens, spaces = get_dtokens_and_spaces(dtokens, text)
|
|
|
|
# create Doc with tag bi-gram based part-of-speech identification rules
|
|
words, tags, inflections, lemmas, norms, readings, sub_tokens_list = (
|
|
zip(*dtokens) if dtokens else [[]] * 7
|
|
)
|
|
sub_tokens_list = list(sub_tokens_list)
|
|
doc = Doc(self.vocab, words=words, spaces=spaces)
|
|
next_pos = None # for bi-gram rules
|
|
for idx, (token, dtoken) in enumerate(zip(doc, dtokens)):
|
|
token.tag_ = dtoken.tag
|
|
if next_pos: # already identified in previous iteration
|
|
token.pos = next_pos
|
|
next_pos = None
|
|
else:
|
|
token.pos, next_pos = resolve_pos(
|
|
token.orth_,
|
|
dtoken.tag,
|
|
tags[idx + 1] if idx + 1 < len(tags) else None,
|
|
)
|
|
# if there's no lemma info (it's an unk) just use the surface
|
|
token.lemma_ = dtoken.lemma if dtoken.lemma else dtoken.surface
|
|
morph = {}
|
|
if dtoken.inf:
|
|
# it's normal for this to be empty for non-inflecting types
|
|
morph["Inflection"] = dtoken.inf
|
|
token.norm_ = dtoken.norm
|
|
if dtoken.reading:
|
|
# punctuation is its own reading, but we don't want values like
|
|
# "=" here
|
|
morph["Reading"] = re.sub("[=|]", "_", dtoken.reading)
|
|
token.morph = MorphAnalysis(self.vocab, morph)
|
|
if self.need_subtokens:
|
|
doc.user_data["sub_tokens"] = sub_tokens_list
|
|
return doc
|
|
|
|
def _get_dtokens(self, sudachipy_tokens, need_sub_tokens: bool = True):
|
|
sub_tokens_list = (
|
|
self._get_sub_tokens(sudachipy_tokens) if need_sub_tokens else None
|
|
)
|
|
dtokens = [
|
|
DetailedToken(
|
|
token.surface(), # orth
|
|
"-".join([xx for xx in token.part_of_speech()[:4] if xx != "*"]), # tag
|
|
";".join([xx for xx in token.part_of_speech()[4:] if xx != "*"]), # inf
|
|
token.dictionary_form(), # lemma
|
|
token.normalized_form(),
|
|
token.reading_form(),
|
|
sub_tokens_list[idx]
|
|
if sub_tokens_list
|
|
else None, # user_data['sub_tokens']
|
|
)
|
|
for idx, token in enumerate(sudachipy_tokens)
|
|
if len(token.surface()) > 0
|
|
# remove empty tokens which can be produced with characters like … that
|
|
]
|
|
# Sudachi normalizes internally and outputs each space char as a token.
|
|
# This is the preparation for get_dtokens_and_spaces() to merge the continuous space tokens
|
|
return [
|
|
t
|
|
for idx, t in enumerate(dtokens)
|
|
if idx == 0
|
|
or not t.surface.isspace()
|
|
or t.tag != "空白"
|
|
or not dtokens[idx - 1].surface.isspace()
|
|
or dtokens[idx - 1].tag != "空白"
|
|
]
|
|
|
|
def _get_sub_tokens(self, sudachipy_tokens):
|
|
# do nothing for default split mode
|
|
if not self.need_subtokens:
|
|
return None
|
|
|
|
sub_tokens_list = [] # list of (list of list of DetailedToken | None)
|
|
for token in sudachipy_tokens:
|
|
sub_a = token.split(self.tokenizer.SplitMode.A)
|
|
if len(sub_a) == 1: # no sub tokens
|
|
sub_tokens_list.append(None)
|
|
elif self.split_mode == "B":
|
|
sub_tokens_list.append([self._get_dtokens(sub_a, False)])
|
|
else: # "C"
|
|
sub_b = token.split(self.tokenizer.SplitMode.B)
|
|
if len(sub_a) == len(sub_b):
|
|
dtokens = self._get_dtokens(sub_a, False)
|
|
sub_tokens_list.append([dtokens, dtokens])
|
|
else:
|
|
sub_tokens_list.append(
|
|
[
|
|
self._get_dtokens(sub_a, False),
|
|
self._get_dtokens(sub_b, False),
|
|
]
|
|
)
|
|
return sub_tokens_list
|
|
|
|
def score(self, examples):
|
|
validate_examples(examples, "JapaneseTokenizer.score")
|
|
return Scorer.score_tokenization(examples)
|
|
|
|
def _get_config(self) -> Dict[str, Any]:
|
|
return {"split_mode": self.split_mode}
|
|
|
|
def _set_config(self, config: Dict[str, Any] = {}) -> None:
|
|
self.split_mode = config.get("split_mode", None)
|
|
|
|
def to_bytes(self, **kwargs) -> bytes:
|
|
serializers = {"cfg": lambda: srsly.json_dumps(self._get_config())}
|
|
return util.to_bytes(serializers, [])
|
|
|
|
def from_bytes(self, data: bytes, **kwargs) -> "JapaneseTokenizer":
|
|
deserializers = {"cfg": lambda b: self._set_config(srsly.json_loads(b))}
|
|
util.from_bytes(data, deserializers, [])
|
|
self.tokenizer = try_sudachi_import(self.split_mode)
|
|
return self
|
|
|
|
def to_disk(self, path: Union[str, Path], **kwargs) -> None:
|
|
path = util.ensure_path(path)
|
|
serializers = {"cfg": lambda p: srsly.write_json(p, self._get_config())}
|
|
util.to_disk(path, serializers, [])
|
|
|
|
def from_disk(self, path: Union[str, Path], **kwargs) -> "JapaneseTokenizer":
|
|
path = util.ensure_path(path)
|
|
serializers = {"cfg": lambda p: self._set_config(srsly.read_json(p))}
|
|
util.from_disk(path, serializers, [])
|
|
self.tokenizer = try_sudachi_import(self.split_mode)
|
|
return self
|
|
|
|
|
|
class JapaneseDefaults(BaseDefaults):
|
|
config = load_config_from_str(DEFAULT_CONFIG)
|
|
stop_words = STOP_WORDS
|
|
syntax_iterators = SYNTAX_ITERATORS
|
|
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
|
|
|
|
|
class Japanese(Language):
|
|
lang = "ja"
|
|
Defaults = JapaneseDefaults
|
|
|
|
|
|
@Japanese.factory(
|
|
"morphologizer",
|
|
assigns=["token.morph", "token.pos"],
|
|
default_config={
|
|
"model": DEFAULT_MORPH_MODEL,
|
|
"overwrite": True,
|
|
"extend": True,
|
|
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
|
},
|
|
default_score_weights={
|
|
"pos_acc": 0.5,
|
|
"morph_micro_f": 0.5,
|
|
"morph_per_feat": None,
|
|
},
|
|
)
|
|
def make_morphologizer(
|
|
nlp: Language,
|
|
model: Model,
|
|
name: str,
|
|
overwrite: bool,
|
|
extend: bool,
|
|
scorer: Optional[Callable],
|
|
):
|
|
return Morphologizer(
|
|
nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer
|
|
)
|
|
|
|
|
|
# Hold the attributes we need with convenient names
|
|
DetailedToken = namedtuple(
|
|
"DetailedToken", ["surface", "tag", "inf", "lemma", "norm", "reading", "sub_tokens"]
|
|
)
|
|
|
|
|
|
def try_sudachi_import(split_mode="A"):
|
|
"""SudachiPy is required for Japanese support, so check for it.
|
|
It it's not available blow up and explain how to fix it.
|
|
split_mode should be one of these values: "A", "B", "C", None->"A"."""
|
|
try:
|
|
from sudachipy import dictionary, tokenizer
|
|
|
|
split_mode = {
|
|
None: tokenizer.Tokenizer.SplitMode.A,
|
|
"A": tokenizer.Tokenizer.SplitMode.A,
|
|
"B": tokenizer.Tokenizer.SplitMode.B,
|
|
"C": tokenizer.Tokenizer.SplitMode.C,
|
|
}[split_mode]
|
|
tok = dictionary.Dictionary().create(mode=split_mode)
|
|
return tok
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Japanese support requires SudachiPy and SudachiDict-core "
|
|
"(https://github.com/WorksApplications/SudachiPy). "
|
|
"Install with `pip install sudachipy sudachidict_core` or "
|
|
"install spaCy with `pip install spacy[ja]`."
|
|
) from None
|
|
|
|
|
|
def resolve_pos(orth, tag, next_tag):
|
|
"""If necessary, add a field to the POS tag for UD mapping.
|
|
Under Universal Dependencies, sometimes the same Unidic POS tag can
|
|
be mapped differently depending on the literal token or its context
|
|
in the sentence. This function returns resolved POSs for both token
|
|
and next_token by tuple.
|
|
"""
|
|
|
|
# Some tokens have their UD tag decided based on the POS of the following
|
|
# token.
|
|
|
|
# apply orth based mapping
|
|
if tag in TAG_ORTH_MAP:
|
|
orth_map = TAG_ORTH_MAP[tag]
|
|
if orth in orth_map:
|
|
return orth_map[orth], None # current_pos, next_pos
|
|
|
|
# apply tag bi-gram mapping
|
|
if next_tag:
|
|
tag_bigram = tag, next_tag
|
|
if tag_bigram in TAG_BIGRAM_MAP:
|
|
current_pos, next_pos = TAG_BIGRAM_MAP[tag_bigram]
|
|
if current_pos is None: # apply tag uni-gram mapping for current_pos
|
|
return (
|
|
TAG_MAP[tag][POS],
|
|
next_pos,
|
|
) # only next_pos is identified by tag bi-gram mapping
|
|
else:
|
|
return current_pos, next_pos
|
|
|
|
# apply tag uni-gram mapping
|
|
return TAG_MAP[tag][POS], None
|
|
|
|
|
|
def get_dtokens_and_spaces(dtokens, text, gap_tag="空白"):
|
|
# Compare the content of tokens and text, first
|
|
words = [x.surface for x in dtokens]
|
|
if "".join("".join(words).split()) != "".join(text.split()):
|
|
raise ValueError(Errors.E194.format(text=text, words=words))
|
|
|
|
text_dtokens = []
|
|
text_spaces = []
|
|
text_pos = 0
|
|
# handle empty and whitespace-only texts
|
|
if len(words) == 0:
|
|
return text_dtokens, text_spaces
|
|
elif len([word for word in words if not word.isspace()]) == 0:
|
|
assert text.isspace()
|
|
text_dtokens = [DetailedToken(text, gap_tag, "", text, text, None, None)]
|
|
text_spaces = [False]
|
|
return text_dtokens, text_spaces
|
|
|
|
# align words and dtokens by referring text, and insert gap tokens for the space char spans
|
|
for i, (word, dtoken) in enumerate(zip(words, dtokens)):
|
|
# skip all space tokens
|
|
if word.isspace():
|
|
continue
|
|
try:
|
|
word_start = text[text_pos:].index(word)
|
|
except ValueError:
|
|
raise ValueError(Errors.E194.format(text=text, words=words)) from None
|
|
|
|
# space token
|
|
if word_start > 0:
|
|
w = text[text_pos : text_pos + word_start]
|
|
text_dtokens.append(DetailedToken(w, gap_tag, "", w, w, None, None))
|
|
text_spaces.append(False)
|
|
text_pos += word_start
|
|
|
|
# content word
|
|
text_dtokens.append(dtoken)
|
|
text_spaces.append(False)
|
|
text_pos += len(word)
|
|
# poll a space char after the word
|
|
if i + 1 < len(dtokens) and dtokens[i + 1].surface == " ":
|
|
text_spaces[-1] = True
|
|
text_pos += 1
|
|
|
|
# trailing space token
|
|
if text_pos < len(text):
|
|
w = text[text_pos:]
|
|
text_dtokens.append(DetailedToken(w, gap_tag, "", w, w, None, None))
|
|
text_spaces.append(False)
|
|
|
|
return text_dtokens, text_spaces
|
|
|
|
|
|
__all__ = ["Japanese"]
|