mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
d722a439aa
Now that the tagger doesn't manage the tag map, the child classes senter and morphologizer don't need to override the serialization methods.
173 lines
6.2 KiB
Cython
173 lines
6.2 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
from itertools import islice
|
|
|
|
import srsly
|
|
from thinc.api import Model, SequenceCategoricalCrossentropy, Config
|
|
|
|
from ..tokens.doc cimport Doc
|
|
|
|
from .pipe import deserialize_config
|
|
from .tagger import Tagger
|
|
from ..language import Language
|
|
from ..errors import Errors
|
|
from ..scorer import Scorer
|
|
from ..training import validate_examples
|
|
from .. import util
|
|
|
|
|
|
default_model_config = """
|
|
[model]
|
|
@architectures = "spacy.Tagger.v1"
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = null
|
|
width = 12
|
|
depth = 1
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 2
|
|
subword_features = true
|
|
"""
|
|
DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
@Language.factory(
|
|
"senter",
|
|
assigns=["token.is_sent_start"],
|
|
default_config={"model": DEFAULT_SENTER_MODEL},
|
|
scores=["sents_p", "sents_r", "sents_f"],
|
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
|
)
|
|
def make_senter(nlp: Language, name: str, model: Model):
|
|
return SentenceRecognizer(nlp.vocab, model, name)
|
|
|
|
|
|
class SentenceRecognizer(Tagger):
|
|
"""Pipeline component for sentence segmentation.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer
|
|
"""
|
|
def __init__(self, vocab, model, name="senter"):
|
|
"""Initialize a sentence recognizer.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#init
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self._rehearsal_model = None
|
|
self.cfg = {}
|
|
|
|
@property
|
|
def labels(self):
|
|
"""RETURNS (Tuple[str]): The labels."""
|
|
# labels are numbered by index internally, so this matches GoldParse
|
|
# and Example where the sentence-initial tag is 1 and other positions
|
|
# are 0
|
|
return tuple(["I", "S"])
|
|
|
|
def set_annotations(self, docs, batch_tag_ids):
|
|
"""Modify a batch of documents, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#set_annotations
|
|
"""
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
if hasattr(doc_tag_ids, "get"):
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
# Don't clobber existing sentence boundaries
|
|
if doc.c[j].sent_start == 0:
|
|
if tag_id == 1:
|
|
doc.c[j].sent_start = 1
|
|
else:
|
|
doc.c[j].sent_start = -1
|
|
|
|
def get_loss(self, examples, scores):
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
|
|
"""
|
|
validate_examples(examples, "SentenceRecognizer.get_loss")
|
|
labels = self.labels
|
|
loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False)
|
|
truths = []
|
|
for eg in examples:
|
|
eg_truth = []
|
|
for x in eg.get_aligned("SENT_START"):
|
|
if x is None:
|
|
eg_truth.append(None)
|
|
elif x == 1:
|
|
eg_truth.append(labels[1])
|
|
else:
|
|
# anything other than 1: 0, -1, -1 as uint64
|
|
eg_truth.append(labels[0])
|
|
truths.append(eg_truth)
|
|
d_scores, loss = loss_func(scores, truths)
|
|
if self.model.ops.xp.isnan(loss):
|
|
raise ValueError("nan value when computing loss")
|
|
return float(loss), d_scores
|
|
|
|
def begin_training(self, get_examples, *, pipeline=None, sgd=None):
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
|
|
components that this component is part of. Corresponds to
|
|
nlp.pipeline.
|
|
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
|
|
create_optimizer if it doesn't exist.
|
|
RETURNS (thinc.api.Optimizer): The optimizer.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#begin_training
|
|
"""
|
|
self._ensure_examples(get_examples)
|
|
doc_sample = []
|
|
label_sample = []
|
|
assert self.labels, Errors.E924.format(name=self.name)
|
|
for example in islice(get_examples(), 10):
|
|
doc_sample.append(example.x)
|
|
gold_tags = example.get_aligned("SENT_START")
|
|
gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
|
|
label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
|
|
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=doc_sample, Y=label_sample)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
def add_label(self, label, values=None):
|
|
raise NotImplementedError
|
|
|
|
def score(self, examples, **kwargs):
|
|
"""Score a batch of examples.
|
|
|
|
examples (Iterable[Example]): The examples to score.
|
|
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#score
|
|
"""
|
|
validate_examples(examples, "SentenceRecognizer.score")
|
|
results = Scorer.score_spans(examples, "sents", **kwargs)
|
|
del results["sents_per_type"]
|
|
return results
|