mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
89 lines
2.8 KiB
Python
89 lines
2.8 KiB
Python
import spacy
|
|
from spacy.lang.en import English
|
|
from spacy.tokens import Doc, DocBin
|
|
|
|
from ..util import make_tempdir
|
|
|
|
|
|
def test_serialize_empty_doc(en_vocab):
|
|
doc = Doc(en_vocab)
|
|
data = doc.to_bytes()
|
|
doc2 = Doc(en_vocab)
|
|
doc2.from_bytes(data)
|
|
assert len(doc) == len(doc2)
|
|
for token1, token2 in zip(doc, doc2):
|
|
assert token1.text == token2.text
|
|
|
|
|
|
def test_serialize_doc_roundtrip_bytes(en_vocab):
|
|
doc = Doc(en_vocab, words=["hello", "world"])
|
|
doc.cats = {"A": 0.5}
|
|
doc_b = doc.to_bytes()
|
|
new_doc = Doc(en_vocab).from_bytes(doc_b)
|
|
assert new_doc.to_bytes() == doc_b
|
|
|
|
|
|
def test_serialize_doc_roundtrip_disk(en_vocab):
|
|
doc = Doc(en_vocab, words=["hello", "world"])
|
|
with make_tempdir() as d:
|
|
file_path = d / "doc"
|
|
doc.to_disk(file_path)
|
|
doc_d = Doc(en_vocab).from_disk(file_path)
|
|
assert doc.to_bytes() == doc_d.to_bytes()
|
|
|
|
|
|
def test_serialize_doc_roundtrip_disk_str_path(en_vocab):
|
|
doc = Doc(en_vocab, words=["hello", "world"])
|
|
with make_tempdir() as d:
|
|
file_path = d / "doc"
|
|
file_path = str(file_path)
|
|
doc.to_disk(file_path)
|
|
doc_d = Doc(en_vocab).from_disk(file_path)
|
|
assert doc.to_bytes() == doc_d.to_bytes()
|
|
|
|
|
|
def test_serialize_doc_exclude(en_vocab):
|
|
doc = Doc(en_vocab, words=["hello", "world"])
|
|
doc.user_data["foo"] = "bar"
|
|
new_doc = Doc(en_vocab).from_bytes(doc.to_bytes())
|
|
assert new_doc.user_data["foo"] == "bar"
|
|
new_doc = Doc(en_vocab).from_bytes(doc.to_bytes(), exclude=["user_data"])
|
|
assert not new_doc.user_data
|
|
new_doc = Doc(en_vocab).from_bytes(doc.to_bytes(exclude=["user_data"]))
|
|
assert not new_doc.user_data
|
|
|
|
|
|
def test_serialize_doc_bin():
|
|
doc_bin = DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"], store_user_data=True)
|
|
texts = ["Some text", "Lots of texts...", "..."]
|
|
cats = {"A": 0.5}
|
|
nlp = English()
|
|
for doc in nlp.pipe(texts):
|
|
doc.cats = cats
|
|
doc_bin.add(doc)
|
|
bytes_data = doc_bin.to_bytes()
|
|
|
|
# Deserialize later, e.g. in a new process
|
|
nlp = spacy.blank("en")
|
|
doc_bin = DocBin().from_bytes(bytes_data)
|
|
reloaded_docs = list(doc_bin.get_docs(nlp.vocab))
|
|
for i, doc in enumerate(reloaded_docs):
|
|
assert doc.text == texts[i]
|
|
assert doc.cats == cats
|
|
|
|
|
|
def test_serialize_doc_bin_unknown_spaces(en_vocab):
|
|
doc1 = Doc(en_vocab, words=["that", "'s"])
|
|
assert doc1.has_unknown_spaces
|
|
assert doc1.text == "that 's "
|
|
doc2 = Doc(en_vocab, words=["that", "'s"], spaces=[False, False])
|
|
assert not doc2.has_unknown_spaces
|
|
assert doc2.text == "that's"
|
|
|
|
doc_bin = DocBin().from_bytes(DocBin(docs=[doc1, doc2]).to_bytes())
|
|
re_doc1, re_doc2 = doc_bin.get_docs(en_vocab)
|
|
assert re_doc1.has_unknown_spaces
|
|
assert re_doc1.text == "that 's "
|
|
assert not re_doc2.has_unknown_spaces
|
|
assert re_doc2.text == "that's"
|