mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* remove _convert_examples * fix test_gold, raise TypeError if tuples are used instead of Example's * throwing proper errors when the wrong type of objects are passed * fix deprectated format in tests * fix deprectated format in parser tests * fix tests for NEL, morph, senter, tagger, textcat * update regression tests with new Example format * use make_doc * more fixes to nlp.update calls * few more small fixes for rehearse and evaluate * only import ml_datasets if really necessary
		
			
				
	
	
		
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
 | 
						|
from spacy.kb import KnowledgeBase
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.gold import Example
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.pipeline import EntityRuler
 | 
						|
from spacy.tests.util import make_tempdir
 | 
						|
from spacy.tokens import Span
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def nlp():
 | 
						|
    return English()
 | 
						|
 | 
						|
 | 
						|
def assert_almost_equal(a, b):
 | 
						|
    delta = 0.0001
 | 
						|
    assert a - delta <= b <= a + delta
 | 
						|
 | 
						|
 | 
						|
def test_kb_valid_entities(nlp):
 | 
						|
    """Test the valid construction of a KB with 3 entities and two aliases"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
 | 
						|
    mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
 | 
						|
    mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
 | 
						|
 | 
						|
    # adding aliases
 | 
						|
    mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
 | 
						|
    mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | 
						|
 | 
						|
    # test the size of the corresponding KB
 | 
						|
    assert mykb.get_size_entities() == 3
 | 
						|
    assert mykb.get_size_aliases() == 2
 | 
						|
 | 
						|
    # test retrieval of the entity vectors
 | 
						|
    assert mykb.get_vector("Q1") == [8, 4, 3]
 | 
						|
    assert mykb.get_vector("Q2") == [2, 1, 0]
 | 
						|
    assert mykb.get_vector("Q3") == [-1, -6, 5]
 | 
						|
 | 
						|
    # test retrieval of prior probabilities
 | 
						|
    assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
 | 
						|
    assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
 | 
						|
    assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
 | 
						|
    assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
 | 
						|
 | 
						|
 | 
						|
def test_kb_invalid_entities(nlp):
 | 
						|
    """Test the invalid construction of a KB with an alias linked to a non-existing entity"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases - should fail because one of the given IDs is not valid
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.add_alias(
 | 
						|
            alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def test_kb_invalid_probabilities(nlp):
 | 
						|
    """Test the invalid construction of a KB with wrong prior probabilities"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases - should fail because the sum of the probabilities exceeds 1
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
 | 
						|
 | 
						|
 | 
						|
def test_kb_invalid_combination(nlp):
 | 
						|
    """Test the invalid construction of a KB with non-matching entity and probability lists"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases - should fail because the entities and probabilities vectors are not of equal length
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.add_alias(
 | 
						|
            alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def test_kb_invalid_entity_vector(nlp):
 | 
						|
    """Test the invalid construction of a KB with non-matching entity vector lengths"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
 | 
						|
 | 
						|
    # this should fail because the kb's expected entity vector length is 3
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | 
						|
 | 
						|
 | 
						|
def test_candidate_generation(nlp):
 | 
						|
    """Test correct candidate generation"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases
 | 
						|
    mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | 
						|
    mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | 
						|
 | 
						|
    # test the size of the relevant candidates
 | 
						|
    assert len(mykb.get_candidates("douglas")) == 2
 | 
						|
    assert len(mykb.get_candidates("adam")) == 1
 | 
						|
    assert len(mykb.get_candidates("shrubbery")) == 0
 | 
						|
 | 
						|
    # test the content of the candidates
 | 
						|
    assert mykb.get_candidates("adam")[0].entity_ == "Q2"
 | 
						|
    assert mykb.get_candidates("adam")[0].alias_ == "adam"
 | 
						|
    assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 12)
 | 
						|
    assert_almost_equal(mykb.get_candidates("adam")[0].prior_prob, 0.9)
 | 
						|
 | 
						|
 | 
						|
def test_append_alias(nlp):
 | 
						|
    """Test that we can append additional alias-entity pairs"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases
 | 
						|
    mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
 | 
						|
    mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | 
						|
 | 
						|
    # test the size of the relevant candidates
 | 
						|
    assert len(mykb.get_candidates("douglas")) == 2
 | 
						|
 | 
						|
    # append an alias
 | 
						|
    mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | 
						|
 | 
						|
    # test the size of the relevant candidates has been incremented
 | 
						|
    assert len(mykb.get_candidates("douglas")) == 3
 | 
						|
 | 
						|
    # append the same alias-entity pair again should not work (will throw a warning)
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
 | 
						|
 | 
						|
    # test the size of the relevant candidates remained unchanged
 | 
						|
    assert len(mykb.get_candidates("douglas")) == 3
 | 
						|
 | 
						|
 | 
						|
def test_append_invalid_alias(nlp):
 | 
						|
    """Test that append an alias will throw an error if prior probs are exceeding 1"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases
 | 
						|
    mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | 
						|
    mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | 
						|
 | 
						|
    # append an alias - should fail because the entities and probabilities vectors are not of equal length
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | 
						|
 | 
						|
 | 
						|
def test_preserving_links_asdoc(nlp):
 | 
						|
    """Test that Span.as_doc preserves the existing entity links"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
 | 
						|
 | 
						|
    # adding aliases
 | 
						|
    mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
 | 
						|
    mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
 | 
						|
 | 
						|
    # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
 | 
						|
    sentencizer = nlp.create_pipe("sentencizer")
 | 
						|
    nlp.add_pipe(sentencizer)
 | 
						|
 | 
						|
    ruler = EntityRuler(nlp)
 | 
						|
    patterns = [
 | 
						|
        {"label": "GPE", "pattern": "Boston"},
 | 
						|
        {"label": "GPE", "pattern": "Denver"},
 | 
						|
    ]
 | 
						|
    ruler.add_patterns(patterns)
 | 
						|
    nlp.add_pipe(ruler)
 | 
						|
 | 
						|
    cfg = {"kb": mykb, "incl_prior": False}
 | 
						|
    el_pipe = nlp.create_pipe(name="entity_linker", config=cfg)
 | 
						|
    el_pipe.begin_training()
 | 
						|
    el_pipe.incl_context = False
 | 
						|
    el_pipe.incl_prior = True
 | 
						|
    nlp.add_pipe(el_pipe, last=True)
 | 
						|
 | 
						|
    # test whether the entity links are preserved by the `as_doc()` function
 | 
						|
    text = "She lives in Boston. He lives in Denver."
 | 
						|
    doc = nlp(text)
 | 
						|
    for ent in doc.ents:
 | 
						|
        orig_text = ent.text
 | 
						|
        orig_kb_id = ent.kb_id_
 | 
						|
        sent_doc = ent.sent.as_doc()
 | 
						|
        for s_ent in sent_doc.ents:
 | 
						|
            if s_ent.text == orig_text:
 | 
						|
                assert s_ent.kb_id_ == orig_kb_id
 | 
						|
 | 
						|
 | 
						|
def test_preserving_links_ents(nlp):
 | 
						|
    """Test that doc.ents preserves KB annotations"""
 | 
						|
    text = "She lives in Boston. He lives in Denver."
 | 
						|
    doc = nlp(text)
 | 
						|
    assert len(list(doc.ents)) == 0
 | 
						|
 | 
						|
    boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
 | 
						|
    doc.ents = [boston_ent]
 | 
						|
    assert len(list(doc.ents)) == 1
 | 
						|
    assert list(doc.ents)[0].label_ == "LOC"
 | 
						|
    assert list(doc.ents)[0].kb_id_ == "Q1"
 | 
						|
 | 
						|
 | 
						|
def test_preserving_links_ents_2(nlp):
 | 
						|
    """Test that doc.ents preserves KB annotations"""
 | 
						|
    text = "She lives in Boston. He lives in Denver."
 | 
						|
    doc = nlp(text)
 | 
						|
    assert len(list(doc.ents)) == 0
 | 
						|
 | 
						|
    loc = doc.vocab.strings.add("LOC")
 | 
						|
    q1 = doc.vocab.strings.add("Q1")
 | 
						|
 | 
						|
    doc.ents = [(loc, q1, 3, 4)]
 | 
						|
    assert len(list(doc.ents)) == 1
 | 
						|
    assert list(doc.ents)[0].label_ == "LOC"
 | 
						|
    assert list(doc.ents)[0].kb_id_ == "Q1"
 | 
						|
 | 
						|
 | 
						|
# fmt: off
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("Russ Cochran captured his first major title with his son as caddie.",
 | 
						|
        {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | 
						|
         "entities": [(0, 12, "PERSON")]}),
 | 
						|
    ("Russ Cochran his reprints include EC Comics.",
 | 
						|
        {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | 
						|
         "entities": [(0, 12, "PERSON")]}),
 | 
						|
    ("Russ Cochran has been publishing comic art.",
 | 
						|
        {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | 
						|
         "entities": [(0, 12, "PERSON")]}),
 | 
						|
    ("Russ Cochran was a member of University of Kentucky's golf team.",
 | 
						|
        {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | 
						|
         "entities": [(0, 12, "PERSON"), (43, 51, "LOC")]}),
 | 
						|
]
 | 
						|
GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
 | 
						|
# fmt: on
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe(nlp.create_pipe("sentencizer"))
 | 
						|
 | 
						|
    # Add a custom component to recognize "Russ Cochran" as an entity for the example training data
 | 
						|
    ruler = EntityRuler(nlp)
 | 
						|
    patterns = [
 | 
						|
        {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
 | 
						|
    ]
 | 
						|
    ruler.add_patterns(patterns)
 | 
						|
    nlp.add_pipe(ruler)
 | 
						|
 | 
						|
    # Convert the texts to docs to make sure we have doc.ents set for the training examples
 | 
						|
    train_examples = []
 | 
						|
    for text, annotation in TRAIN_DATA:
 | 
						|
        doc = nlp(text)
 | 
						|
        train_examples.append(Example.from_dict(doc, annotation))
 | 
						|
 | 
						|
    # create artificial KB - assign same prior weight to the two russ cochran's
 | 
						|
    # Q2146908 (Russ Cochran): American golfer
 | 
						|
    # Q7381115 (Russ Cochran): publisher
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | 
						|
    mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | 
						|
    mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
 | 
						|
    mykb.add_alias(
 | 
						|
        alias="Russ Cochran",
 | 
						|
        entities=["Q2146908", "Q7381115"],
 | 
						|
        probabilities=[0.5, 0.5],
 | 
						|
    )
 | 
						|
 | 
						|
    # Create the Entity Linker component and add it to the pipeline
 | 
						|
    entity_linker = nlp.create_pipe("entity_linker", config={"kb": mykb})
 | 
						|
    nlp.add_pipe(entity_linker, last=True)
 | 
						|
 | 
						|
    # train the NEL pipe
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["entity_linker"] < 0.001
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    predictions = []
 | 
						|
    for text, annotation in TRAIN_DATA:
 | 
						|
        doc = nlp(text)
 | 
						|
        for ent in doc.ents:
 | 
						|
            predictions.append(ent.kb_id_)
 | 
						|
    assert predictions == GOLD_entities
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        predictions = []
 | 
						|
        for text, annotation in TRAIN_DATA:
 | 
						|
            doc2 = nlp2(text)
 | 
						|
            for ent in doc2.ents:
 | 
						|
                predictions.append(ent.kb_id_)
 | 
						|
        assert predictions == GOLD_entities
 |