mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* remove _convert_examples * fix test_gold, raise TypeError if tuples are used instead of Example's * throwing proper errors when the wrong type of objects are passed * fix deprectated format in tests * fix deprectated format in parser tests * fix tests for NEL, morph, senter, tagger, textcat * update regression tests with new Example format * use make_doc * more fixes to nlp.update calls * few more small fixes for rehearse and evaluate * only import ml_datasets if really necessary
		
			
				
	
	
		
			67 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			67 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.gold import Example
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.tests.util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
def test_label_types():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(nlp.create_pipe("morphologizer"))
 | 
						|
    nlp.get_pipe("morphologizer").add_label("Feat=A")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.get_pipe("morphologizer").add_label(9)
 | 
						|
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    (
 | 
						|
        "I like green eggs",
 | 
						|
        {
 | 
						|
            "morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"],
 | 
						|
            "pos": ["NOUN", "VERB", "ADJ", "NOUN"],
 | 
						|
        },
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        "Eat blue ham",
 | 
						|
        {"morphs": ["Feat=V", "Feat=J", "Feat=N"], "pos": ["VERB", "ADJ", "NOUN"]},
 | 
						|
    ),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
 | 
						|
    nlp = English()
 | 
						|
    morphologizer = nlp.create_pipe("morphologizer")
 | 
						|
    train_examples = []
 | 
						|
    for inst in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
 | 
						|
        for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
 | 
						|
            morphologizer.add_label(morph + "|POS=" + pos)
 | 
						|
    nlp.add_pipe(morphologizer)
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["morphologizer"] < 0.00001
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I like blue eggs"
 | 
						|
    doc = nlp(test_text)
 | 
						|
    gold_morphs = [
 | 
						|
        "Feat=N|POS=NOUN",
 | 
						|
        "Feat=V|POS=VERB",
 | 
						|
        "Feat=J|POS=ADJ",
 | 
						|
        "Feat=N|POS=NOUN",
 | 
						|
    ]
 | 
						|
    assert [t.morph_ for t in doc] == gold_morphs
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        assert gold_morphs == [t.morph_ for t in doc2]
 |