mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Tidy up pipes * Fix init, defaults and raise custom errors * Update docs * Update docs [ci skip] * Apply suggestions from code review Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> * Tidy up error handling and validation, fix consistency * Simplify get_examples check * Remove unused import [ci skip] Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			212 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import List, Iterable, Optional, Dict, Tuple, Callable, Set
 | 
						|
from thinc.types import Floats2d
 | 
						|
from thinc.api import SequenceCategoricalCrossentropy, set_dropout_rate, Model
 | 
						|
from thinc.api import Optimizer, Config
 | 
						|
from thinc.util import to_numpy
 | 
						|
 | 
						|
from ..errors import Errors
 | 
						|
from ..gold import Example, spans_from_biluo_tags, iob_to_biluo, biluo_to_iob
 | 
						|
from ..gold import validate_examples
 | 
						|
from ..tokens import Doc
 | 
						|
from ..language import Language
 | 
						|
from ..vocab import Vocab
 | 
						|
from ..scorer import Scorer
 | 
						|
from .pipe import Pipe
 | 
						|
 | 
						|
 | 
						|
default_model_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.BILUOTagger.v1"
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 128
 | 
						|
depth = 4
 | 
						|
embed_size = 7000
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
"""
 | 
						|
DEFAULT_SIMPLE_NER_MODEL = Config().from_str(default_model_config)["model"]
 | 
						|
 | 
						|
 | 
						|
@Language.factory(
 | 
						|
    "simple_ner",
 | 
						|
    assigns=["doc.ents"],
 | 
						|
    default_config={"labels": [], "model": DEFAULT_SIMPLE_NER_MODEL},
 | 
						|
    scores=["ents_p", "ents_r", "ents_f", "ents_per_type"],
 | 
						|
    default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0},
 | 
						|
)
 | 
						|
def make_simple_ner(
 | 
						|
    nlp: Language, name: str, model: Model, labels: Iterable[str]
 | 
						|
) -> "SimpleNER":
 | 
						|
    return SimpleNER(nlp.vocab, model, name, labels=labels)
 | 
						|
 | 
						|
 | 
						|
class SimpleNER(Pipe):
 | 
						|
    """Named entity recognition with a tagging model. The model should include
 | 
						|
    validity constraints to ensure that only valid tag sequences are returned."""
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab: Vocab,
 | 
						|
        model: Model,
 | 
						|
        name: str = "simple_ner",
 | 
						|
        *,
 | 
						|
        labels: Iterable[str],
 | 
						|
    ) -> None:
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.name = name
 | 
						|
        self.cfg = {"labels": []}
 | 
						|
        for label in labels:
 | 
						|
            self.add_label(label)
 | 
						|
        self.loss_func = SequenceCategoricalCrossentropy(
 | 
						|
            names=self.get_tag_names(), normalize=True, missing_value=None
 | 
						|
        )
 | 
						|
        assert self.model is not None
 | 
						|
 | 
						|
    @property
 | 
						|
    def is_biluo(self) -> bool:
 | 
						|
        return self.model.name.startswith("biluo")
 | 
						|
 | 
						|
    @property
 | 
						|
    def labels(self) -> Tuple[str]:
 | 
						|
        return tuple(self.cfg["labels"])
 | 
						|
 | 
						|
    def add_label(self, label: str) -> None:
 | 
						|
        """Add a new label to the pipe.
 | 
						|
        label (str): The label to add.
 | 
						|
        DOCS: https://spacy.io/api/simplener#add_label
 | 
						|
        """
 | 
						|
        if not isinstance(label, str):
 | 
						|
            raise ValueError(Errors.E187)
 | 
						|
        if label not in self.labels:
 | 
						|
            self.cfg["labels"].append(label)
 | 
						|
            self.vocab.strings.add(label)
 | 
						|
 | 
						|
    def get_tag_names(self) -> List[str]:
 | 
						|
        if self.is_biluo:
 | 
						|
            return (
 | 
						|
                [f"B-{label}" for label in self.labels]
 | 
						|
                + [f"I-{label}" for label in self.labels]
 | 
						|
                + [f"L-{label}" for label in self.labels]
 | 
						|
                + [f"U-{label}" for label in self.labels]
 | 
						|
                + ["O"]
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            return (
 | 
						|
                [f"B-{label}" for label in self.labels]
 | 
						|
                + [f"I-{label}" for label in self.labels]
 | 
						|
                + ["O"]
 | 
						|
            )
 | 
						|
 | 
						|
    def predict(self, docs: List[Doc]) -> List[Floats2d]:
 | 
						|
        scores = self.model.predict(docs)
 | 
						|
        return scores
 | 
						|
 | 
						|
    def set_annotations(self, docs: List[Doc], scores: List[Floats2d]) -> None:
 | 
						|
        """Set entities on a batch of documents from a batch of scores."""
 | 
						|
        tag_names = self.get_tag_names()
 | 
						|
        for i, doc in enumerate(docs):
 | 
						|
            actions = to_numpy(scores[i].argmax(axis=1))
 | 
						|
            tags = [tag_names[actions[j]] for j in range(len(doc))]
 | 
						|
            if not self.is_biluo:
 | 
						|
                tags = iob_to_biluo(tags)
 | 
						|
            doc.ents = spans_from_biluo_tags(doc, tags)
 | 
						|
 | 
						|
    def update(
 | 
						|
        self,
 | 
						|
        examples: List[Example],
 | 
						|
        *,
 | 
						|
        set_annotations: bool = False,
 | 
						|
        drop: float = 0.0,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
        losses: Optional[Dict[str, float]] = None,
 | 
						|
    ) -> Dict[str, float]:
 | 
						|
        if losses is None:
 | 
						|
            losses = {}
 | 
						|
        losses.setdefault("ner", 0.0)
 | 
						|
        validate_examples(examples, "SimpleNER.update")
 | 
						|
        if not any(_has_ner(eg) for eg in examples):
 | 
						|
            return losses
 | 
						|
        docs = [eg.predicted for eg in examples]
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        scores, bp_scores = self.model.begin_update(docs)
 | 
						|
        loss, d_scores = self.get_loss(examples, scores)
 | 
						|
        bp_scores(d_scores)
 | 
						|
        if set_annotations:
 | 
						|
            self.set_annotations(docs, scores)
 | 
						|
        if sgd is not None:
 | 
						|
            self.model.finish_update(sgd)
 | 
						|
        losses["ner"] += loss
 | 
						|
        return losses
 | 
						|
 | 
						|
    def get_loss(self, examples: List[Example], scores) -> Tuple[List[Floats2d], float]:
 | 
						|
        validate_examples(examples, "SimpleNER.get_loss")
 | 
						|
        truths = []
 | 
						|
        for eg in examples:
 | 
						|
            tags = eg.get_aligned_ner()
 | 
						|
            gold_tags = [(tag if tag != "-" else None) for tag in tags]
 | 
						|
            if not self.is_biluo:
 | 
						|
                gold_tags = biluo_to_iob(gold_tags)
 | 
						|
            truths.append(gold_tags)
 | 
						|
        for i in range(len(scores)):
 | 
						|
            if len(scores[i]) != len(truths[i]):
 | 
						|
                raise ValueError(
 | 
						|
                    f"Mismatched output and gold sizes.\n"
 | 
						|
                    f"Output: {len(scores[i])}, gold: {len(truths[i])}."
 | 
						|
                    f"Input: {len(examples[i].doc)}"
 | 
						|
                )
 | 
						|
        d_scores, loss = self.loss_func(scores, truths)
 | 
						|
        return loss, d_scores
 | 
						|
 | 
						|
    def begin_training(
 | 
						|
        self,
 | 
						|
        get_examples: Callable[[], Iterable[Example]],
 | 
						|
        pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
    ):
 | 
						|
        all_labels = set()
 | 
						|
        if not hasattr(get_examples, "__call__"):
 | 
						|
            err = Errors.E930.format(name="SimpleNER", obj=type(get_examples))
 | 
						|
            raise ValueError(err)
 | 
						|
        for example in get_examples():
 | 
						|
            all_labels.update(_get_labels(example))
 | 
						|
        for label in sorted(all_labels):
 | 
						|
            self.add_label(label)
 | 
						|
        labels = self.labels
 | 
						|
        n_actions = self.model.attrs["get_num_actions"](len(labels))
 | 
						|
        self.model.set_dim("nO", n_actions)
 | 
						|
        self.model.initialize()
 | 
						|
        if pipeline is not None:
 | 
						|
            self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **self.cfg)
 | 
						|
        self.loss_func = SequenceCategoricalCrossentropy(
 | 
						|
            names=self.get_tag_names(), normalize=True, missing_value=None
 | 
						|
        )
 | 
						|
        return sgd
 | 
						|
 | 
						|
    def init_multitask_objectives(self, *args, **kwargs):
 | 
						|
        pass
 | 
						|
 | 
						|
    def score(self, examples, **kwargs):
 | 
						|
        validate_examples(examples, "SimpleNER.score")
 | 
						|
        return Scorer.score_spans(examples, "ents", **kwargs)
 | 
						|
 | 
						|
 | 
						|
def _has_ner(example: Example) -> bool:
 | 
						|
    for ner_tag in example.get_aligned_ner():
 | 
						|
        if ner_tag != "-" and ner_tag is not None:
 | 
						|
            return True
 | 
						|
    else:
 | 
						|
        return False
 | 
						|
 | 
						|
 | 
						|
def _get_labels(example: Example) -> Set[str]:
 | 
						|
    labels = set()
 | 
						|
    for ner_tag in example.get_aligned("ENT_TYPE", as_string=True):
 | 
						|
        if ner_tag != "O" and ner_tag != "-":
 | 
						|
            labels.add(ner_tag)
 | 
						|
    return labels
 |