mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			78 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| Lexeme Features
 | |
| ===============
 | |
| 
 | |
| A lexeme is an entry in the lexicon --- the vocabulary --- for a word, punctuation
 | |
| symbol, whitespace unit, etc.  Lexemes come with lots of pre-computed information,
 | |
| that help you write good feature functions.  Features are integer-valued where
 | |
| possible --- instead of strings, spaCy refers to strings by consecutive ID numbers,
 | |
| which you can use to look up the string values if necessary.
 | |
| 
 | |
| String features
 | |
| ---------------
 | |
| 
 | |
| +---------+-------------------------------------------------------------------+
 | |
| | SIC     | The word as it appeared in the sentence, unaltered.               |
 | |
| +---------+-------------------------------------------------------------------+
 | |
| | NORM    | For frequent words, case normalization is applied.                |
 | |
| |         | Otherwise, back-off to SHAPE.                                     |
 | |
| +---------+-------------------------------------------------------------------+
 | |
| | SHAPE   | Remap the characters of the word as follows:                      |
 | |
| |         |                                                                   |
 | |
| |         | a-z --> x, A-Z --> X, 0-9 --> d, ,.;:"'?!$- --> self, other --> \*|
 | |
| |         |                                                                   |
 | |
| |         | Trim sequences of length 3+ to 3, e.g                             |
 | |
| |         |                                                                   |
 | |
| |         | apples --> xxx, Apples --> Xxxx, app9LES@ --> xxx9XXX*            |
 | |
| +---------+-------------------------------------------------------------------+
 | |
| | ASCIIED | Use unidecode.unidecode(sic) to approximate the word using the    |
 | |
| |         | ascii characters.                                                 |
 | |
| +---------+-------------------------------------------------------------------+
 | |
| | PREFIX  | sic_unicode_string[:1]                                            |
 | |
| +---------+-------------------------------------------------------------------+
 | |
| | SUFFIX  | sic_unicode_string[-3:]                                           |
 | |
| +---------+-------------------------------------------------------------------+
 | |
| 
 | |
| 
 | |
| Integer features
 | |
| ----------------
 | |
| 
 | |
| +--------------+--------------------------------------------------------------+
 | |
| | LENGTH       |  Length of the string, in unicode                            |
 | |
| +--------------+--------------------------------------------------------------+
 | |
| | CLUSTER      | Brown cluster                                                |
 | |
| +--------------+--------------------------------------------------------------+
 | |
| | POS_TYPE     | K-means cluster of word's tag affinities                     |
 | |
| +--------------+--------------------------------------------------------------+
 | |
| | SENSE_TYPE   | K-means cluster of word's sense affinities                   |
 | |
| +--------------+--------------------------------------------------------------+
 | |
| 
 | |
| Boolean features
 | |
| ----------------
 | |
| 
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IS_ALPHA    | The result of sic.isalpha()                                  |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IS_ASCII    | Check whether all the word's characters are ascii characters |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IS_DIGIT    | The result of sic.isdigit()                                  |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IS_LOWER    | The result of sic.islower()                                  |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IS_PUNCT    | Check whether all characters are in the class TODO           |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IS_SPACE    | The result of sic.isspace()                                  |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IS_TITLE    | The result of sic.istitle()                                  |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IS_UPPER    | The result of sic.isupper()                                  |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | LIKE_URL    | Check whether the string looks like it could be a URL.  Aims |
 | |
| |             | for low false negative rate.                                 |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | LIKE_NUMBER | Check whether the string looks like it could be a numeric    |
 | |
| |             | entity, e.g. 10,000 10th .10 . Skews for low false negative  |
 | |
| |             | rate.                                                        |
 | |
| +-------------+--------------------------------------------------------------+
 | |
| | IN_LIST     | Facility for loading arbitrary run-time word lists?          |
 | |
| +-------------+--------------------------------------------------------------+
 |