mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-06 07:16:29 +03:00
d105771a07
This script's data needs are not intuitive. I have added a note explaining that (a) it expects pos/neg polarity data, (b) the structure of the data dir (train/test), and (c) a standard resource for such polarity data.
282 lines
9.3 KiB
Python
282 lines
9.3 KiB
Python
"""This script expects something like a binary sentiment data set, such as
|
|
that available here: `http://www.cs.cornell.edu/people/pabo/movie-review-data/`
|
|
|
|
It expects a directory structure like: `data_dir/train/{pos|neg}`
|
|
and `data_dir/test/{pos|neg}`. Put (say) 90% of the files in the former
|
|
and the remainder in the latter.
|
|
"""
|
|
|
|
from __future__ import unicode_literals
|
|
from __future__ import print_function
|
|
from __future__ import division
|
|
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
import numpy
|
|
import plac
|
|
|
|
import spacy.en
|
|
|
|
|
|
def read_data(nlp, data_dir):
|
|
for subdir, label in (('pos', 1), ('neg', 0)):
|
|
for filename in (data_dir / subdir).iterdir():
|
|
text = filename.open().read()
|
|
doc = nlp(text)
|
|
if len(doc) >= 1:
|
|
yield doc, label
|
|
|
|
|
|
def partition(examples, split_size):
|
|
examples = list(examples)
|
|
numpy.random.shuffle(examples)
|
|
n_docs = len(examples)
|
|
split = int(n_docs * split_size)
|
|
return examples[:split], examples[split:]
|
|
|
|
|
|
def minibatch(data, bs=24):
|
|
for i in range(0, len(data), bs):
|
|
yield data[i:i+bs]
|
|
|
|
|
|
class Extractor(object):
|
|
def __init__(self, nlp, vector_length, dropout=0.3):
|
|
self.nlp = nlp
|
|
self.dropout = dropout
|
|
self.vector = numpy.zeros((vector_length, ))
|
|
|
|
def doc2bow(self, doc, dropout=None):
|
|
if dropout is None:
|
|
dropout = self.dropout
|
|
bow = defaultdict(int)
|
|
all_words = defaultdict(int)
|
|
for word in doc:
|
|
if numpy.random.random() >= dropout and not word.is_punct:
|
|
bow[word.lower] += 1
|
|
all_words[word.lower] += 1
|
|
if sum(bow.values()) >= 1:
|
|
return bow
|
|
else:
|
|
return all_words
|
|
|
|
def bow2vec(self, bow, E):
|
|
self.vector.fill(0)
|
|
n = 0
|
|
for orth_id, freq in bow.items():
|
|
self.vector += self.nlp.vocab[self.nlp.vocab.strings[orth_id]].vector * freq
|
|
# Apply the fine-tuning we've learned
|
|
if orth_id < E.shape[0]:
|
|
self.vector += E[orth_id] * freq
|
|
n += freq
|
|
return self.vector / n
|
|
|
|
|
|
class NeuralNetwork(object):
|
|
def __init__(self, depth, width, n_classes, n_vocab, extracter, optimizer):
|
|
self.depth = depth
|
|
self.width = width
|
|
self.n_classes = n_classes
|
|
self.weights = Params.random(depth, width, width, n_classes, n_vocab)
|
|
self.doc2bow = extracter.doc2bow
|
|
self.bow2vec = extracter.bow2vec
|
|
self.optimizer = optimizer
|
|
self._gradient = Params.zero(depth, width, width, n_classes, n_vocab)
|
|
self._activity = numpy.zeros((depth, width))
|
|
|
|
def train(self, batch):
|
|
activity = self._activity
|
|
gradient = self._gradient
|
|
activity.fill(0)
|
|
gradient.data.fill(0)
|
|
loss = 0
|
|
word_freqs = defaultdict(int)
|
|
for doc, label in batch:
|
|
word_ids = self.doc2bow(doc)
|
|
vector = self.bow2vec(word_ids, self.weights.E)
|
|
self.forward(activity, vector)
|
|
loss += self.backprop(vector, gradient, activity, word_ids, label)
|
|
for w, freq in word_ids.items():
|
|
word_freqs[w] += freq
|
|
self.optimizer(self.weights, gradient, len(batch), word_freqs)
|
|
return loss
|
|
|
|
def predict(self, doc):
|
|
actv = self._activity
|
|
actv.fill(0)
|
|
W = self.weights.W
|
|
b = self.weights.b
|
|
E = self.weights.E
|
|
|
|
vector = self.bow2vec(self.doc2bow(doc, dropout=0.0), E)
|
|
self.forward(actv, vector)
|
|
return numpy.argmax(softmax(actv[-1], W[-1], b[-1]))
|
|
|
|
def forward(self, actv, in_):
|
|
actv.fill(0)
|
|
W = self.weights.W; b = self.weights.b
|
|
actv[0] = relu(in_, W[0], b[0])
|
|
for i in range(1, self.depth):
|
|
actv[i] = relu(actv[i-1], W[i], b[i])
|
|
|
|
def backprop(self, input_vector, gradient, activity, ids, label):
|
|
W = self.weights.W
|
|
b = self.weights.b
|
|
|
|
target = numpy.zeros(self.n_classes)
|
|
target[label] = 1.0
|
|
pred = softmax(activity[-1], W[-1], b[-1])
|
|
delta = pred - target
|
|
|
|
for i in range(self.depth, 0, -1):
|
|
gradient.b[i] += delta
|
|
gradient.W[i] += numpy.outer(delta, activity[i-1])
|
|
delta = d_relu(activity[i-1]) * W[i].T.dot(delta)
|
|
|
|
gradient.b[0] += delta
|
|
gradient.W[0] += numpy.outer(delta, input_vector)
|
|
tuning = W[0].T.dot(delta).reshape((self.width,)) / len(ids)
|
|
for w, freq in ids.items():
|
|
if w < gradient.E.shape[0]:
|
|
gradient.E[w] += tuning * freq
|
|
return -sum(target * numpy.log(pred))
|
|
|
|
|
|
def softmax(actvn, W, b):
|
|
w = W.dot(actvn) + b
|
|
ew = numpy.exp(w - max(w))
|
|
return (ew / sum(ew)).ravel()
|
|
|
|
|
|
def relu(actvn, W, b):
|
|
x = W.dot(actvn) + b
|
|
return x * (x > 0)
|
|
|
|
|
|
def d_relu(x):
|
|
return x > 0
|
|
|
|
|
|
class Adagrad(object):
|
|
def __init__(self, lr, rho):
|
|
self.eps = 1e-3
|
|
# initial learning rate
|
|
self.learning_rate = lr
|
|
self.rho = rho
|
|
# stores sum of squared gradients
|
|
#self.h = numpy.zeros(self.dim)
|
|
#self._curr_rate = numpy.zeros(self.h.shape)
|
|
self.h = None
|
|
self._curr_rate = None
|
|
|
|
def __call__(self, weights, gradient, batch_size, word_freqs):
|
|
if self.h is None:
|
|
self.h = numpy.zeros(gradient.data.shape)
|
|
self._curr_rate = numpy.zeros(gradient.data.shape)
|
|
self.L2_penalty(gradient, weights, word_freqs)
|
|
update = self.rescale(gradient.data / batch_size)
|
|
weights.data -= update
|
|
|
|
def rescale(self, gradient):
|
|
if self.h is None:
|
|
self.h = numpy.zeros(gradient.data.shape)
|
|
self._curr_rate = numpy.zeros(gradient.data.shape)
|
|
self._curr_rate.fill(0)
|
|
self.h += gradient ** 2
|
|
self._curr_rate = self.learning_rate / (numpy.sqrt(self.h) + self.eps)
|
|
return self._curr_rate * gradient
|
|
|
|
def L2_penalty(self, gradient, weights, word_freqs):
|
|
# L2 Regularization
|
|
for i in range(len(weights.W)):
|
|
gradient.W[i] += weights.W[i] * self.rho
|
|
gradient.b[i] += weights.b[i] * self.rho
|
|
for w, freq in word_freqs.items():
|
|
if w < gradient.E.shape[0]:
|
|
gradient.E[w] += weights.E[w] * self.rho
|
|
|
|
|
|
class Params(object):
|
|
@classmethod
|
|
def zero(cls, depth, n_embed, n_hidden, n_labels, n_vocab):
|
|
return cls(depth, n_embed, n_hidden, n_labels, n_vocab, lambda x: numpy.zeros((x,)))
|
|
|
|
@classmethod
|
|
def random(cls, depth, nE, nH, nL, nV):
|
|
return cls(depth, nE, nH, nL, nV, lambda x: (numpy.random.rand(x) * 2 - 1) * 0.08)
|
|
|
|
def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, initializer):
|
|
nE = n_embed; nH = n_hidden; nL = n_labels; nV = n_vocab
|
|
n_weights = sum([
|
|
(nE * nH) + nH,
|
|
(nH * nH + nH) * depth,
|
|
(nH * nL) + nL,
|
|
(nV * nE)
|
|
])
|
|
self.data = initializer(n_weights)
|
|
self.W = []
|
|
self.b = []
|
|
i = self._add_layer(0, nE, nH)
|
|
for _ in range(1, depth):
|
|
i = self._add_layer(i, nH, nH)
|
|
i = self._add_layer(i, nL, nH)
|
|
self.E = self.data[i : i + (nV * nE)].reshape((nV, nE))
|
|
self.E.fill(0)
|
|
|
|
def _add_layer(self, start, x, y):
|
|
end = start + (x * y)
|
|
self.W.append(self.data[start : end].reshape((x, y)))
|
|
self.b.append(self.data[end : end + x].reshape((x, )))
|
|
return end + x
|
|
|
|
|
|
@plac.annotations(
|
|
data_dir=("Data directory", "positional", None, Path),
|
|
n_iter=("Number of iterations (epochs)", "option", "i", int),
|
|
width=("Size of hidden layers", "option", "H", int),
|
|
depth=("Depth", "option", "d", int),
|
|
dropout=("Drop-out rate", "option", "r", float),
|
|
rho=("Regularization penalty", "option", "p", float),
|
|
eta=("Learning rate", "option", "e", float),
|
|
batch_size=("Batch size", "option", "b", int),
|
|
vocab_size=("Number of words to fine-tune", "option", "w", int),
|
|
)
|
|
def main(data_dir, depth=3, width=300, n_iter=5, vocab_size=40000,
|
|
batch_size=24, dropout=0.3, rho=1e-5, eta=0.005):
|
|
n_classes = 2
|
|
print("Loading")
|
|
nlp = spacy.en.English(parser=False)
|
|
train_data, dev_data = partition(read_data(nlp, data_dir / 'train'), 0.8)
|
|
print("Begin training")
|
|
extracter = Extractor(nlp, width, dropout=0.3)
|
|
optimizer = Adagrad(eta, rho)
|
|
model = NeuralNetwork(depth, width, n_classes, vocab_size, extracter, optimizer)
|
|
prev_best = 0
|
|
best_weights = None
|
|
for epoch in range(n_iter):
|
|
numpy.random.shuffle(train_data)
|
|
train_loss = 0.0
|
|
for batch in minibatch(train_data, bs=batch_size):
|
|
train_loss += model.train(batch)
|
|
n_correct = sum(model.predict(x) == y for x, y in dev_data)
|
|
print(epoch, train_loss, n_correct / len(dev_data))
|
|
if n_correct >= prev_best:
|
|
best_weights = model.weights.data.copy()
|
|
prev_best = n_correct
|
|
|
|
model.weights.data = best_weights
|
|
print("Evaluating")
|
|
eval_data = list(read_data(nlp, data_dir / 'test'))
|
|
n_correct = sum(model.predict(x) == y for x, y in eval_data)
|
|
print(n_correct / len(eval_data))
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
#import cProfile
|
|
#import pstats
|
|
#cProfile.runctx("main(Path('data/aclImdb'))", globals(), locals(), "Profile.prof")
|
|
#s = pstats.Stats("Profile.prof")
|
|
#s.strip_dirs().sort_stats("time").print_stats(100)
|
|
plac.call(main)
|