mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			273 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
import random
 | 
						|
import numpy.random
 | 
						|
from numpy.testing import assert_equal
 | 
						|
from thinc.api import fix_random_seed
 | 
						|
from spacy import util
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline import TextCategorizer
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | 
						|
from spacy.scorer import Scorer
 | 
						|
from spacy.training import Example
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
 | 
						|
    ("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def make_get_examples(nlp):
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
 | 
						|
    def get_examples():
 | 
						|
        return train_examples
 | 
						|
 | 
						|
    return get_examples
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Test is flakey when run with others")
 | 
						|
def test_simple_train():
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    textcat.add_label("answer")
 | 
						|
    nlp.initialize()
 | 
						|
    for i in range(5):
 | 
						|
        for text, answer in [
 | 
						|
            ("aaaa", 1.0),
 | 
						|
            ("bbbb", 0),
 | 
						|
            ("aa", 1.0),
 | 
						|
            ("bbbbbbbbb", 0.0),
 | 
						|
            ("aaaaaa", 1),
 | 
						|
        ]:
 | 
						|
            nlp.update((text, {"cats": {"answer": answer}}))
 | 
						|
    doc = nlp("aaa")
 | 
						|
    assert "answer" in doc.cats
 | 
						|
    assert doc.cats["answer"] >= 0.5
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Test is flakey when run with others")
 | 
						|
def test_textcat_learns_multilabel():
 | 
						|
    random.seed(5)
 | 
						|
    numpy.random.seed(5)
 | 
						|
    docs = []
 | 
						|
    nlp = Language()
 | 
						|
    letters = ["a", "b", "c"]
 | 
						|
    for w1 in letters:
 | 
						|
        for w2 in letters:
 | 
						|
            cats = {letter: float(w2 == letter) for letter in letters}
 | 
						|
            docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
 | 
						|
    random.shuffle(docs)
 | 
						|
    textcat = TextCategorizer(nlp.vocab, width=8)
 | 
						|
    for letter in letters:
 | 
						|
        textcat.add_label(letter)
 | 
						|
    optimizer = textcat.initialize(lambda: [])
 | 
						|
    for i in range(30):
 | 
						|
        losses = {}
 | 
						|
        examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
 | 
						|
        textcat.update(examples, sgd=optimizer, losses=losses)
 | 
						|
        random.shuffle(docs)
 | 
						|
    for w1 in letters:
 | 
						|
        for w2 in letters:
 | 
						|
            doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
 | 
						|
            truth = {letter: w2 == letter for letter in letters}
 | 
						|
            textcat(doc)
 | 
						|
            for cat, score in doc.cats.items():
 | 
						|
                if not truth[cat]:
 | 
						|
                    assert score < 0.5
 | 
						|
                else:
 | 
						|
                    assert score > 0.5
 | 
						|
 | 
						|
 | 
						|
def test_label_types():
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    textcat.add_label("answer")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.add_label(9)
 | 
						|
 | 
						|
 | 
						|
def test_no_label():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("textcat")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.initialize()
 | 
						|
 | 
						|
 | 
						|
def test_implicit_label():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("textcat")
 | 
						|
    nlp.initialize(get_examples=make_get_examples(nlp))
 | 
						|
 | 
						|
 | 
						|
def test_no_resize():
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    textcat.add_label("POSITIVE")
 | 
						|
    textcat.add_label("NEGATIVE")
 | 
						|
    nlp.initialize()
 | 
						|
    assert textcat.model.get_dim("nO") == 2
 | 
						|
    # this throws an error because the textcat can't be resized after initialization
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.add_label("NEUTRAL")
 | 
						|
 | 
						|
 | 
						|
def test_initialize_examples():
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    for text, annotations in TRAIN_DATA:
 | 
						|
        for label, value in annotations.get("cats").items():
 | 
						|
            textcat.add_label(label)
 | 
						|
    # you shouldn't really call this more than once, but for testing it should be fine
 | 
						|
    nlp.initialize()
 | 
						|
    get_examples = make_get_examples(nlp)
 | 
						|
    nlp.initialize(get_examples=get_examples)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.initialize(get_examples=lambda: None)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.initialize(get_examples=get_examples())
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = English()
 | 
						|
    nlp.config["initialize"]["components"]["textcat"] = {"positive_label": "POSITIVE"}
 | 
						|
    # Set exclusive labels
 | 
						|
    config = {"model": {"exclusive_classes": True}}
 | 
						|
    textcat = nlp.add_pipe("textcat", config=config)
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert textcat.model.get_dim("nO") == 2
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["textcat"] < 0.01
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I am happy."
 | 
						|
    doc = nlp(test_text)
 | 
						|
    cats = doc.cats
 | 
						|
    assert cats["POSITIVE"] > 0.9
 | 
						|
    assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        cats2 = doc2.cats
 | 
						|
        assert cats2["POSITIVE"] > 0.9
 | 
						|
        assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
 | 
						|
 | 
						|
    # Test scoring
 | 
						|
    scores = nlp.evaluate(train_examples)
 | 
						|
    assert scores["cats_micro_f"] == 1.0
 | 
						|
    assert scores["cats_score"] == 1.0
 | 
						|
    assert "cats_score_desc" in scores
 | 
						|
 | 
						|
    # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | 
						|
    texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
 | 
						|
    batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)]
 | 
						|
    batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)]
 | 
						|
    no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]]
 | 
						|
    assert_equal(batch_deps_1, batch_deps_2)
 | 
						|
    assert_equal(batch_deps_1, no_batch_deps)
 | 
						|
 | 
						|
 | 
						|
# fmt: off
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "textcat_config",
 | 
						|
    [
 | 
						|
        {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False},
 | 
						|
        {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False},
 | 
						|
        {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True},
 | 
						|
        {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True},
 | 
						|
        {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "ngram_size": 1, "pretrained_vectors": False, "width": 64, "conv_depth": 2, "embed_size": 2000, "window_size": 2, "dropout": None},
 | 
						|
        {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": True, "ngram_size": 5, "pretrained_vectors": False, "width": 128, "conv_depth": 2, "embed_size": 2000, "window_size": 1, "dropout": None},
 | 
						|
        {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": True, "ngram_size": 2, "pretrained_vectors": False, "width": 32, "conv_depth": 3, "embed_size": 500, "window_size": 3, "dropout": None},
 | 
						|
        {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True},
 | 
						|
        {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False},
 | 
						|
    ],
 | 
						|
)
 | 
						|
# fmt: on
 | 
						|
def test_textcat_configs(textcat_config):
 | 
						|
    pipe_config = {"model": textcat_config}
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat", config=pipe_config)
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
        for label, value in annotations.get("cats").items():
 | 
						|
            textcat.add_label(label)
 | 
						|
    optimizer = nlp.initialize()
 | 
						|
    for i in range(5):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
 | 
						|
 | 
						|
def test_positive_class():
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    get_examples = make_get_examples(nlp)
 | 
						|
    textcat.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS")
 | 
						|
    assert textcat.labels == ("POS", "NEG")
 | 
						|
 | 
						|
 | 
						|
def test_positive_class_not_present():
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    get_examples = make_get_examples(nlp)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.initialize(get_examples, labels=["SOME", "THING"], positive_label="POS")
 | 
						|
 | 
						|
 | 
						|
def test_positive_class_not_binary():
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    get_examples = make_get_examples(nlp)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.initialize(
 | 
						|
            get_examples, labels=["SOME", "THING", "POS"], positive_label="POS"
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def test_textcat_evaluation():
 | 
						|
    train_examples = []
 | 
						|
    nlp = English()
 | 
						|
    ref1 = nlp("one")
 | 
						|
    ref1.cats = {"winter": 1.0, "summer": 1.0, "spring": 1.0, "autumn": 1.0}
 | 
						|
    pred1 = nlp("one")
 | 
						|
    pred1.cats = {"winter": 1.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
 | 
						|
    train_examples.append(Example(pred1, ref1))
 | 
						|
 | 
						|
    ref2 = nlp("two")
 | 
						|
    ref2.cats = {"winter": 0.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
 | 
						|
    pred2 = nlp("two")
 | 
						|
    pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0}
 | 
						|
    train_examples.append(Example(pred2, ref2))
 | 
						|
 | 
						|
    scores = Scorer().score_cats(
 | 
						|
        train_examples, "cats", labels=["winter", "summer", "spring", "autumn"]
 | 
						|
    )
 | 
						|
    assert scores["cats_f_per_type"]["winter"]["p"] == 1 / 2
 | 
						|
    assert scores["cats_f_per_type"]["winter"]["r"] == 1 / 1
 | 
						|
    assert scores["cats_f_per_type"]["summer"]["p"] == 0
 | 
						|
    assert scores["cats_f_per_type"]["summer"]["r"] == 0 / 1
 | 
						|
    assert scores["cats_f_per_type"]["spring"]["p"] == 1 / 1
 | 
						|
    assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 2
 | 
						|
    assert scores["cats_f_per_type"]["autumn"]["p"] == 2 / 2
 | 
						|
    assert scores["cats_f_per_type"]["autumn"]["r"] == 2 / 2
 | 
						|
 | 
						|
    assert scores["cats_micro_p"] == 4 / 5
 | 
						|
    assert scores["cats_micro_r"] == 4 / 6
 |