mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			309 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			309 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
import os
 | 
						|
import ctypes
 | 
						|
from pathlib import Path
 | 
						|
from spacy.about import __version__ as spacy_version
 | 
						|
from spacy import util
 | 
						|
from spacy import prefer_gpu, require_gpu
 | 
						|
from spacy.ml._precomputable_affine import PrecomputableAffine
 | 
						|
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
 | 
						|
from spacy.util import dot_to_object, SimpleFrozenList
 | 
						|
from thinc.api import Config, Optimizer, ConfigValidationError
 | 
						|
from spacy.training.batchers import minibatch_by_words
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.lang.nl import Dutch
 | 
						|
from spacy.language import DEFAULT_CONFIG_PATH
 | 
						|
from spacy.schemas import ConfigSchemaTraining
 | 
						|
 | 
						|
from .util import get_random_doc
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def is_admin():
 | 
						|
    """Determine if the tests are run as admin or not."""
 | 
						|
    try:
 | 
						|
        admin = os.getuid() == 0
 | 
						|
    except AttributeError:
 | 
						|
        admin = ctypes.windll.shell32.IsUserAnAdmin() != 0
 | 
						|
 | 
						|
    return admin
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("text", ["hello/world", "hello world"])
 | 
						|
def test_util_ensure_path_succeeds(text):
 | 
						|
    path = util.ensure_path(text)
 | 
						|
    assert isinstance(path, Path)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "package,result", [("numpy", True), ("sfkodskfosdkfpsdpofkspdof", False)]
 | 
						|
)
 | 
						|
def test_util_is_package(package, result):
 | 
						|
    """Test that an installed package via pip is recognised by util.is_package."""
 | 
						|
    assert util.is_package(package) is result
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("package", ["thinc"])
 | 
						|
def test_util_get_package_path(package):
 | 
						|
    """Test that a Path object is returned for a package name."""
 | 
						|
    path = util.get_package_path(package)
 | 
						|
    assert isinstance(path, Path)
 | 
						|
 | 
						|
 | 
						|
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
 | 
						|
    model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP).initialize()
 | 
						|
    assert model.get_param("W").shape == (nF, nO, nP, nI)
 | 
						|
    tensor = model.ops.alloc((10, nI))
 | 
						|
    Y, get_dX = model.begin_update(tensor)
 | 
						|
    assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
 | 
						|
    dY = model.ops.alloc((15, nO, nP))
 | 
						|
    ids = model.ops.alloc((15, nF))
 | 
						|
    ids[1, 2] = -1
 | 
						|
    dY[1] = 1
 | 
						|
    assert not model.has_grad("pad")
 | 
						|
    d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
 | 
						|
    assert d_pad[0, 2, 0, 0] == 1.0
 | 
						|
    ids.fill(0.0)
 | 
						|
    dY.fill(0.0)
 | 
						|
    dY[0] = 0
 | 
						|
    ids[1, 2] = 0
 | 
						|
    ids[1, 1] = -1
 | 
						|
    ids[1, 0] = -1
 | 
						|
    dY[1] = 1
 | 
						|
    ids[2, 0] = -1
 | 
						|
    dY[2] = 5
 | 
						|
    d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
 | 
						|
    assert d_pad[0, 0, 0, 0] == 6
 | 
						|
    assert d_pad[0, 1, 0, 0] == 1
 | 
						|
    assert d_pad[0, 2, 0, 0] == 0
 | 
						|
 | 
						|
 | 
						|
def test_prefer_gpu():
 | 
						|
    try:
 | 
						|
        import cupy  # noqa: F401
 | 
						|
    except ImportError:
 | 
						|
        assert not prefer_gpu()
 | 
						|
 | 
						|
 | 
						|
def test_require_gpu():
 | 
						|
    try:
 | 
						|
        import cupy  # noqa: F401
 | 
						|
    except ImportError:
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            require_gpu()
 | 
						|
 | 
						|
 | 
						|
def test_ascii_filenames():
 | 
						|
    """Test that all filenames in the project are ASCII.
 | 
						|
    See: https://twitter.com/_inesmontani/status/1177941471632211968
 | 
						|
    """
 | 
						|
    root = Path(__file__).parent.parent
 | 
						|
    for path in root.glob("**/*"):
 | 
						|
        assert all(ord(c) < 128 for c in path.name), path.name
 | 
						|
 | 
						|
 | 
						|
def test_load_model_blank_shortcut():
 | 
						|
    """Test that using a model name like "blank:en" works as a shortcut for
 | 
						|
    spacy.blank("en").
 | 
						|
    """
 | 
						|
    nlp = util.load_model("blank:en")
 | 
						|
    assert nlp.lang == "en"
 | 
						|
    assert nlp.pipeline == []
 | 
						|
    with pytest.raises(ImportError):
 | 
						|
        util.load_model("blank:fjsfijsdof")
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "version,constraint,compatible",
 | 
						|
    [
 | 
						|
        (spacy_version, spacy_version, True),
 | 
						|
        (spacy_version, f">={spacy_version}", True),
 | 
						|
        ("3.0.0", "2.0.0", False),
 | 
						|
        ("3.2.1", ">=2.0.0", True),
 | 
						|
        ("2.2.10a1", ">=1.0.0,<2.1.1", False),
 | 
						|
        ("3.0.0.dev3", ">=1.2.3,<4.5.6", True),
 | 
						|
        ("n/a", ">=1.2.3,<4.5.6", None),
 | 
						|
        ("1.2.3", "n/a", None),
 | 
						|
        ("n/a", "n/a", None),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_is_compatible_version(version, constraint, compatible):
 | 
						|
    assert util.is_compatible_version(version, constraint) is compatible
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "constraint,expected",
 | 
						|
    [
 | 
						|
        ("3.0.0", False),
 | 
						|
        ("==3.0.0", False),
 | 
						|
        (">=2.3.0", True),
 | 
						|
        (">2.0.0", True),
 | 
						|
        ("<=2.0.0", True),
 | 
						|
        (">2.0.0,<3.0.0", False),
 | 
						|
        (">=2.0.0,<3.0.0", False),
 | 
						|
        ("!=1.1,>=1.0,~=1.0", True),
 | 
						|
        ("n/a", None),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_is_unconstrained_version(constraint, expected):
 | 
						|
    assert util.is_unconstrained_version(constraint) is expected
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "a1,a2,b1,b2,is_match",
 | 
						|
    [
 | 
						|
        ("3.0.0", "3.0", "3.0.1", "3.0", True),
 | 
						|
        ("3.1.0", "3.1", "3.2.1", "3.2", False),
 | 
						|
        ("xxx", None, "1.2.3.dev0", "1.2", False),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_minor_version(a1, a2, b1, b2, is_match):
 | 
						|
    assert util.get_minor_version(a1) == a2
 | 
						|
    assert util.get_minor_version(b1) == b2
 | 
						|
    assert util.is_minor_version_match(a1, b1) is is_match
 | 
						|
    assert util.is_minor_version_match(a2, b2) is is_match
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "dot_notation,expected",
 | 
						|
    [
 | 
						|
        (
 | 
						|
            {"token.pos": True, "token._.xyz": True},
 | 
						|
            {"token": {"pos": True, "_": {"xyz": True}}},
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            {"training.batch_size": 128, "training.optimizer.learn_rate": 0.01},
 | 
						|
            {"training": {"batch_size": 128, "optimizer": {"learn_rate": 0.01}}},
 | 
						|
        ),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_dot_to_dict(dot_notation, expected):
 | 
						|
    result = util.dot_to_dict(dot_notation)
 | 
						|
    assert result == expected
 | 
						|
    assert util.dict_to_dot(result) == dot_notation
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "doc_sizes, expected_batches",
 | 
						|
    [
 | 
						|
        ([400, 400, 199], [3]),
 | 
						|
        ([400, 400, 199, 3], [4]),
 | 
						|
        ([400, 400, 199, 3, 200], [3, 2]),
 | 
						|
        ([400, 400, 199, 3, 1], [5]),
 | 
						|
        ([400, 400, 199, 3, 1, 1500], [5]),  # 1500 will be discarded
 | 
						|
        ([400, 400, 199, 3, 1, 200], [3, 3]),
 | 
						|
        ([400, 400, 199, 3, 1, 999], [3, 3]),
 | 
						|
        ([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
 | 
						|
        ([1, 2, 999], [3]),
 | 
						|
        ([1, 2, 999, 1], [4]),
 | 
						|
        ([1, 200, 999, 1], [2, 2]),
 | 
						|
        ([1, 999, 200, 1], [2, 2]),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_util_minibatch(doc_sizes, expected_batches):
 | 
						|
    docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
 | 
						|
    tol = 0.2
 | 
						|
    batch_size = 1000
 | 
						|
    batches = list(
 | 
						|
        minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
 | 
						|
    )
 | 
						|
    assert [len(batch) for batch in batches] == expected_batches
 | 
						|
 | 
						|
    max_size = batch_size + batch_size * tol
 | 
						|
    for batch in batches:
 | 
						|
        assert sum([len(doc) for doc in batch]) < max_size
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "doc_sizes, expected_batches",
 | 
						|
    [
 | 
						|
        ([400, 4000, 199], [1, 2]),
 | 
						|
        ([400, 400, 199, 3000, 200], [1, 4]),
 | 
						|
        ([400, 400, 199, 3, 1, 1500], [1, 5]),
 | 
						|
        ([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
 | 
						|
        ([1, 2, 9999], [1, 2]),
 | 
						|
        ([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_util_minibatch_oversize(doc_sizes, expected_batches):
 | 
						|
    """ Test that oversized documents are returned in their own batch"""
 | 
						|
    docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
 | 
						|
    tol = 0.2
 | 
						|
    batch_size = 1000
 | 
						|
    batches = list(
 | 
						|
        minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
 | 
						|
    )
 | 
						|
    assert [len(batch) for batch in batches] == expected_batches
 | 
						|
 | 
						|
 | 
						|
def test_util_dot_section():
 | 
						|
    cfg_string = """
 | 
						|
    [nlp]
 | 
						|
    lang = "en"
 | 
						|
    pipeline = ["textcat"]
 | 
						|
 | 
						|
    [components]
 | 
						|
 | 
						|
    [components.textcat]
 | 
						|
    factory = "textcat"
 | 
						|
 | 
						|
    [components.textcat.model]
 | 
						|
    @architectures = "spacy.TextCatBOW.v1"
 | 
						|
    exclusive_classes = true
 | 
						|
    ngram_size = 1
 | 
						|
    no_output_layer = false
 | 
						|
    """
 | 
						|
    nlp_config = Config().from_str(cfg_string)
 | 
						|
    en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
 | 
						|
    default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
 | 
						|
    default_config["nlp"]["lang"] = "nl"
 | 
						|
    nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
 | 
						|
    # Test that creation went OK
 | 
						|
    assert isinstance(en_nlp, English)
 | 
						|
    assert isinstance(nl_nlp, Dutch)
 | 
						|
    assert nl_nlp.pipe_names == []
 | 
						|
    assert en_nlp.pipe_names == ["textcat"]
 | 
						|
    # not exclusive_classes
 | 
						|
    assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
 | 
						|
    # Test that default values got overwritten
 | 
						|
    assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
 | 
						|
    assert nl_nlp.config["nlp"]["pipeline"] == []  # default value []
 | 
						|
    # Test proper functioning of 'dot_to_object'
 | 
						|
    with pytest.raises(KeyError):
 | 
						|
        dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
 | 
						|
    with pytest.raises(KeyError):
 | 
						|
        dot_to_object(en_nlp.config, "nlp.unknownattribute")
 | 
						|
    T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
 | 
						|
    assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
 | 
						|
 | 
						|
 | 
						|
def test_simple_frozen_list():
 | 
						|
    t = SimpleFrozenList(["foo", "bar"])
 | 
						|
    assert t == ["foo", "bar"]
 | 
						|
    assert t.index("bar") == 1  # okay method
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        t.append("baz")
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        t.sort()
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        t.extend(["baz"])
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        t.pop()
 | 
						|
    t = SimpleFrozenList(["foo", "bar"], error="Error!")
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        t.append("baz")
 | 
						|
 | 
						|
 | 
						|
def test_resolve_dot_names():
 | 
						|
    config = {
 | 
						|
        "training": {"optimizer": {"@optimizers": "Adam.v1"}},
 | 
						|
        "foo": {"bar": "training.optimizer", "baz": "training.xyz"},
 | 
						|
    }
 | 
						|
    result = util.resolve_dot_names(config, ["training.optimizer"])
 | 
						|
    assert isinstance(result[0], Optimizer)
 | 
						|
    with pytest.raises(ConfigValidationError) as e:
 | 
						|
        util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
 | 
						|
    errors = e.value.errors
 | 
						|
    assert len(errors) == 1
 | 
						|
    assert errors[0]["loc"] == ["training", "xyz"]
 |