mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			222 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""This script is experimental.
 | 
						|
 | 
						|
Try pre-training the CNN component of the text categorizer using a cheap
 | 
						|
language modelling-like objective. Specifically, we load pretrained vectors
 | 
						|
(from something like word2vec, GloVe, FastText etc), and use the CNN to
 | 
						|
predict the tokens' pretrained vectors. This isn't as easy as it sounds:
 | 
						|
we're not merely doing compression here, because heavy dropout is applied,
 | 
						|
including over the input words. This means the model must often (50% of the time)
 | 
						|
use the context in order to predict the word.
 | 
						|
 | 
						|
To evaluate the technique, we're pre-training with the 50k texts from the IMDB
 | 
						|
corpus, and then training with only 100 labels. Note that it's a bit dirty to
 | 
						|
pre-train with the development data, but also not *so* terrible: we're not using
 | 
						|
the development labels, after all --- only the unlabelled text.
 | 
						|
"""
 | 
						|
import plac
 | 
						|
import random
 | 
						|
import spacy
 | 
						|
import thinc.extra.datasets
 | 
						|
from spacy.util import minibatch, use_gpu, compounding
 | 
						|
from spacy._ml import Tok2Vec
 | 
						|
from spacy.pipeline import TextCategorizer
 | 
						|
import numpy
 | 
						|
 | 
						|
 | 
						|
def load_texts(limit=0):
 | 
						|
    train, dev = thinc.extra.datasets.imdb()
 | 
						|
    train_texts, train_labels = zip(*train)
 | 
						|
    dev_texts, dev_labels = zip(*train)
 | 
						|
    train_texts = list(train_texts)
 | 
						|
    dev_texts = list(dev_texts)
 | 
						|
    random.shuffle(train_texts)
 | 
						|
    random.shuffle(dev_texts)
 | 
						|
    if limit >= 1:
 | 
						|
        return train_texts[:limit]
 | 
						|
    else:
 | 
						|
        return list(train_texts) + list(dev_texts)
 | 
						|
 | 
						|
 | 
						|
def load_textcat_data(limit=0):
 | 
						|
    """Load data from the IMDB dataset."""
 | 
						|
    # Partition off part of the train data for evaluation
 | 
						|
    train_data, eval_data = thinc.extra.datasets.imdb()
 | 
						|
    random.shuffle(train_data)
 | 
						|
    train_data = train_data[-limit:]
 | 
						|
    texts, labels = zip(*train_data)
 | 
						|
    eval_texts, eval_labels = zip(*eval_data)
 | 
						|
    cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
 | 
						|
    eval_cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in eval_labels]
 | 
						|
    return (texts, cats), (eval_texts, eval_cats)
 | 
						|
 | 
						|
 | 
						|
def prefer_gpu():
 | 
						|
    used = spacy.util.use_gpu(0)
 | 
						|
    if used is None:
 | 
						|
        return False
 | 
						|
    else:
 | 
						|
        import cupy.random
 | 
						|
 | 
						|
        cupy.random.seed(0)
 | 
						|
        return True
 | 
						|
 | 
						|
 | 
						|
def build_textcat_model(tok2vec, nr_class, width):
 | 
						|
    from thinc.v2v import Model, Softmax, Maxout
 | 
						|
    from thinc.api import flatten_add_lengths, chain
 | 
						|
    from thinc.t2v import Pooling, sum_pool, mean_pool, max_pool
 | 
						|
    from thinc.misc import Residual, LayerNorm
 | 
						|
    from spacy._ml import logistic, zero_init
 | 
						|
 | 
						|
    with Model.define_operators({">>": chain}):
 | 
						|
        model = (
 | 
						|
            tok2vec
 | 
						|
            >> flatten_add_lengths
 | 
						|
            >> Pooling(mean_pool)
 | 
						|
            >> Softmax(nr_class, width)
 | 
						|
        )
 | 
						|
    model.tok2vec = tok2vec
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def block_gradients(model):
 | 
						|
    from thinc.api import wrap
 | 
						|
 | 
						|
    def forward(X, drop=0.0):
 | 
						|
        Y, _ = model.begin_update(X, drop=drop)
 | 
						|
        return Y, None
 | 
						|
 | 
						|
    return wrap(forward, model)
 | 
						|
 | 
						|
 | 
						|
def create_pipeline(width, embed_size, vectors_model):
 | 
						|
    print("Load vectors")
 | 
						|
    nlp = spacy.load(vectors_model)
 | 
						|
    print("Start training")
 | 
						|
    textcat = TextCategorizer(
 | 
						|
        nlp.vocab,
 | 
						|
        labels=["POSITIVE", "NEGATIVE"],
 | 
						|
        model=build_textcat_model(
 | 
						|
            Tok2Vec(width=width, embed_size=embed_size), 2, width
 | 
						|
        ),
 | 
						|
    )
 | 
						|
 | 
						|
    nlp.add_pipe(textcat)
 | 
						|
    return nlp
 | 
						|
 | 
						|
 | 
						|
def train_tensorizer(nlp, texts, dropout, n_iter):
 | 
						|
    # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | 
						|
    import tqdm
 | 
						|
 | 
						|
    tensorizer = nlp.create_pipe("tensorizer")
 | 
						|
    nlp.add_pipe(tensorizer)
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
    for i in range(n_iter):
 | 
						|
        losses = {}
 | 
						|
        for i, batch in enumerate(minibatch(tqdm.tqdm(texts))):
 | 
						|
            docs = [nlp.make_doc(text) for text in batch]
 | 
						|
            tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=dropout)
 | 
						|
        print(losses)
 | 
						|
    return optimizer
 | 
						|
 | 
						|
 | 
						|
def train_textcat(nlp, n_texts, n_iter=10):
 | 
						|
    # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | 
						|
    import tqdm
 | 
						|
 | 
						|
    textcat = nlp.get_pipe("textcat")
 | 
						|
    tok2vec_weights = textcat.model.tok2vec.to_bytes()
 | 
						|
    (train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts)
 | 
						|
    print(
 | 
						|
        "Using {} examples ({} training, {} evaluation)".format(
 | 
						|
            n_texts, len(train_texts), len(dev_texts)
 | 
						|
        )
 | 
						|
    )
 | 
						|
    train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
 | 
						|
 | 
						|
    # get names of other pipes to disable them during training
 | 
						|
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "textcat"]
 | 
						|
    with nlp.disable_pipes(*other_pipes):  # only train textcat
 | 
						|
        optimizer = nlp.begin_training()
 | 
						|
        textcat.model.tok2vec.from_bytes(tok2vec_weights)
 | 
						|
        print("Training the model...")
 | 
						|
        print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
 | 
						|
        for i in range(n_iter):
 | 
						|
            losses = {"textcat": 0.0}
 | 
						|
            # batch up the examples using spaCy's minibatch
 | 
						|
            batches = minibatch(tqdm.tqdm(train_data), size=2)
 | 
						|
            for batch in batches:
 | 
						|
                texts, annotations = zip(*batch)
 | 
						|
                nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses)
 | 
						|
            with textcat.model.use_params(optimizer.averages):
 | 
						|
                # evaluate on the dev data split off in load_data()
 | 
						|
                scores = evaluate_textcat(nlp.tokenizer, textcat, dev_texts, dev_cats)
 | 
						|
            print(
 | 
						|
                "{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format(  # print a simple table
 | 
						|
                    losses["textcat"],
 | 
						|
                    scores["textcat_p"],
 | 
						|
                    scores["textcat_r"],
 | 
						|
                    scores["textcat_f"],
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
 | 
						|
def evaluate_textcat(tokenizer, textcat, texts, cats):
 | 
						|
    docs = (tokenizer(text) for text in texts)
 | 
						|
    tp = 1e-8
 | 
						|
    fp = 1e-8
 | 
						|
    tn = 1e-8
 | 
						|
    fn = 1e-8
 | 
						|
    for i, doc in enumerate(textcat.pipe(docs)):
 | 
						|
        gold = cats[i]
 | 
						|
        for label, score in doc.cats.items():
 | 
						|
            if label not in gold:
 | 
						|
                continue
 | 
						|
            if score >= 0.5 and gold[label] >= 0.5:
 | 
						|
                tp += 1.0
 | 
						|
            elif score >= 0.5 and gold[label] < 0.5:
 | 
						|
                fp += 1.0
 | 
						|
            elif score < 0.5 and gold[label] < 0.5:
 | 
						|
                tn += 1
 | 
						|
            elif score < 0.5 and gold[label] >= 0.5:
 | 
						|
                fn += 1
 | 
						|
    precision = tp / (tp + fp)
 | 
						|
    recall = tp / (tp + fn)
 | 
						|
    f_score = 2 * (precision * recall) / (precision + recall)
 | 
						|
    return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    width=("Width of CNN layers", "positional", None, int),
 | 
						|
    embed_size=("Embedding rows", "positional", None, int),
 | 
						|
    pretrain_iters=("Number of iterations to pretrain", "option", "pn", int),
 | 
						|
    train_iters=("Number of iterations to pretrain", "option", "tn", int),
 | 
						|
    train_examples=("Number of labelled examples", "option", "eg", int),
 | 
						|
    vectors_model=("Name or path to vectors model to learn from"),
 | 
						|
)
 | 
						|
def main(
 | 
						|
    width,
 | 
						|
    embed_size,
 | 
						|
    vectors_model,
 | 
						|
    pretrain_iters=30,
 | 
						|
    train_iters=30,
 | 
						|
    train_examples=1000,
 | 
						|
):
 | 
						|
    random.seed(0)
 | 
						|
    numpy.random.seed(0)
 | 
						|
    use_gpu = prefer_gpu()
 | 
						|
    print("Using GPU?", use_gpu)
 | 
						|
 | 
						|
    nlp = create_pipeline(width, embed_size, vectors_model)
 | 
						|
    print("Load data")
 | 
						|
    texts = load_texts(limit=0)
 | 
						|
    print("Train tensorizer")
 | 
						|
    optimizer = train_tensorizer(nlp, texts, dropout=0.2, n_iter=pretrain_iters)
 | 
						|
    print("Train textcat")
 | 
						|
    train_textcat(nlp, train_examples, n_iter=train_iters)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    plac.call(main)
 |