mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			140 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from thinc.api import Config
 | |
| 
 | |
| import spacy
 | |
| from spacy import util
 | |
| from spacy.lang.en import English
 | |
| from spacy.util import registry
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| from ...ml.models import build_Tok2Vec_model, build_tb_parser_model
 | |
| 
 | |
| nlp_config_string = """
 | |
| [nlp]
 | |
| lang = "en"
 | |
| 
 | |
| [nlp.pipeline.tok2vec]
 | |
| factory = "tok2vec"
 | |
| 
 | |
| [nlp.pipeline.tok2vec.model]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 342
 | |
| depth = 4
 | |
| window_size = 1
 | |
| embed_size = 2000
 | |
| maxout_pieces = 3
 | |
| subword_features = true
 | |
| dropout = null
 | |
| 
 | |
| [nlp.pipeline.tagger]
 | |
| factory = "tagger"
 | |
| 
 | |
| [nlp.pipeline.tagger.model]
 | |
| @architectures = "spacy.Tagger.v1"
 | |
| 
 | |
| [nlp.pipeline.tagger.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecTensors.v1"
 | |
| width = ${nlp.pipeline.tok2vec.model:width}
 | |
| """
 | |
| 
 | |
| 
 | |
| parser_config_string = """
 | |
| [model]
 | |
| @architectures = "spacy.TransitionBasedParser.v1"
 | |
| nr_feature_tokens = 99
 | |
| hidden_width = 66
 | |
| maxout_pieces = 2
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 333
 | |
| depth = 4
 | |
| embed_size = 5555
 | |
| window_size = 1
 | |
| maxout_pieces = 7
 | |
| subword_features = false
 | |
| dropout = null
 | |
| """
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("my_test_parser")
 | |
| def my_parser():
 | |
|     tok2vec = build_Tok2Vec_model(
 | |
|         width=321,
 | |
|         embed_size=5432,
 | |
|         pretrained_vectors=None,
 | |
|         window_size=3,
 | |
|         maxout_pieces=4,
 | |
|         subword_features=True,
 | |
|         char_embed=True,
 | |
|         nM=64,
 | |
|         nC=8,
 | |
|         conv_depth=2,
 | |
|         bilstm_depth=0,
 | |
|         dropout=None,
 | |
|     )
 | |
|     parser = build_tb_parser_model(
 | |
|         tok2vec=tok2vec, nr_feature_tokens=7, hidden_width=65, maxout_pieces=5
 | |
|     )
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| def test_serialize_nlp():
 | |
|     """ Create a custom nlp pipeline from config and ensure it serializes it correctly """
 | |
|     nlp_config = Config().from_str(nlp_config_string)
 | |
|     nlp = util.load_model_from_config(nlp_config["nlp"])
 | |
|     nlp.begin_training()
 | |
|     assert "tok2vec" in nlp.pipe_names
 | |
|     assert "tagger" in nlp.pipe_names
 | |
|     assert "parser" not in nlp.pipe_names
 | |
|     assert nlp.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         nlp2 = spacy.load(d)
 | |
|         assert "tok2vec" in nlp2.pipe_names
 | |
|         assert "tagger" in nlp2.pipe_names
 | |
|         assert "parser" not in nlp2.pipe_names
 | |
|         assert nlp2.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | |
| 
 | |
| 
 | |
| def test_serialize_custom_nlp():
 | |
|     """ Create a custom nlp pipeline and ensure it serializes it correctly"""
 | |
|     nlp = English()
 | |
|     parser_cfg = dict()
 | |
|     parser_cfg["model"] = {"@architectures": "my_test_parser"}
 | |
|     parser = nlp.create_pipe("parser", parser_cfg)
 | |
|     nlp.add_pipe(parser)
 | |
|     nlp.begin_training()
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         nlp2 = spacy.load(d)
 | |
|         model = nlp2.get_pipe("parser").model
 | |
|         tok2vec = model.get_ref("tok2vec")
 | |
|         upper = model.get_ref("upper")
 | |
| 
 | |
|         # check that we have the correct settings, not the default ones
 | |
|         assert upper.get_dim("nI") == 65
 | |
| 
 | |
| 
 | |
| def test_serialize_parser():
 | |
|     """ Create a non-default parser config to check nlp serializes it correctly """
 | |
|     nlp = English()
 | |
|     model_config = Config().from_str(parser_config_string)
 | |
|     parser = nlp.create_pipe("parser", config=model_config)
 | |
|     parser.add_label("nsubj")
 | |
|     nlp.add_pipe(parser)
 | |
|     nlp.begin_training()
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         nlp2 = spacy.load(d)
 | |
|         model = nlp2.get_pipe("parser").model
 | |
|         tok2vec = model.get_ref("tok2vec")
 | |
|         upper = model.get_ref("upper")
 | |
| 
 | |
|         # check that we have the correct settings, not the default ones
 | |
|         assert upper.get_dim("nI") == 66
 |