mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			470 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			470 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| ---
 | |
| title: DependencyParser
 | |
| tag: class
 | |
| source: spacy/pipeline/dep_parser.pyx
 | |
| teaser: 'Pipeline component for syntactic dependency parsing'
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: parser
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| A transition-based dependency parser component. The dependency parser jointly
 | |
| learns sentence segmentation and labelled dependency parsing, and can optionally
 | |
| learn to merge tokens that had been over-segmented by the tokenizer. The parser
 | |
| uses a variant of the **non-monotonic arc-eager transition-system** described by
 | |
| [Honnibal and Johnson (2014)](https://www.aclweb.org/anthology/D15-1162/), with
 | |
| the addition of a "break" transition to perform the sentence segmentation.
 | |
| [Nivre (2005)](https://www.aclweb.org/anthology/P05-1013/)'s **pseudo-projective
 | |
| dependency transformation** is used to allow the parser to predict
 | |
| non-projective parses.
 | |
| 
 | |
| The parser is trained using an **imitation learning objective**. It follows the
 | |
| actions predicted by the current weights, and at each state, determines which
 | |
| actions are compatible with the optimal parse that could be reached from the
 | |
| current state. The weights are updated such that the scores assigned to the set
 | |
| of optimal actions is increased, while scores assigned to other actions are
 | |
| decreased. Note that more than one action may be optimal for a given state.
 | |
| 
 | |
| ## Assigned Attributes {id="assigned-attributes"}
 | |
| 
 | |
| Dependency predictions are assigned to the `Token.dep` and `Token.head` fields.
 | |
| Beside the dependencies themselves, the parser decides sentence boundaries,
 | |
| which are saved in `Token.is_sent_start` and accessible via `Doc.sents`.
 | |
| 
 | |
| | Location              | Value                                                                                                                                         |
 | |
| | --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `Token.dep`           | The type of dependency relation (hash). ~~int~~                                                                                               |
 | |
| | `Token.dep_`          | The type of dependency relation. ~~str~~                                                                                                      |
 | |
| | `Token.head`          | The syntactic parent, or "governor", of this token. ~~Token~~                                                                                 |
 | |
| | `Token.is_sent_start` | A boolean value indicating whether the token starts a sentence. After the parser runs this will be `True` or `False` for all tokens. ~~bool~~ |
 | |
| | `Doc.sents`           | An iterator over sentences in the `Doc`, determined by `Token.is_sent_start` values. ~~Iterator[Span]~~                                       |
 | |
| 
 | |
| ## Config and implementation {id="config"}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
 | |
| > config = {
 | |
| >    "moves": None,
 | |
| >    "update_with_oracle_cut_size": 100,
 | |
| >    "learn_tokens": False,
 | |
| >    "min_action_freq": 30,
 | |
| >    "model": DEFAULT_PARSER_MODEL,
 | |
| > }
 | |
| > nlp.add_pipe("parser", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting                       | Description                                                                                                                                                                                                                                                                                                           |
 | |
| | ----------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `moves`                       | A list of transition names. Inferred from the data if not provided. Defaults to `None`. ~~Optional[TransitionSystem]~~                                                                                                                                                                                                |
 | |
| | `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~                                                                   |
 | |
| | `learn_tokens`                | Whether to learn to merge subtokens that are split relative to the gold standard. Experimental. Defaults to `False`. ~~bool~~                                                                                                                                                                                         |
 | |
| | `min_action_freq`             | The minimum frequency of labelled actions to retain. Rarer labelled actions have their label backed-off to "dep". While this primarily affects the label accuracy, it can also affect the attachment structure, as the labels are used to represent the pseudo-projectivity transformation. Defaults to `30`. ~~int~~ |
 | |
| | `model`                       | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [TransitionBasedParser](/api/architectures#TransitionBasedParser). ~~Model[List[Doc], List[Floats2d]]~~                                                                                                                   |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/dep_parser.pyx
 | |
| ```
 | |
| 
 | |
| ## DependencyParser.\_\_init\_\_ {id="init",tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > parser = nlp.add_pipe("parser")
 | |
| >
 | |
| > # Construction via add_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_parser"}}
 | |
| > parser = nlp.add_pipe("parser", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import DependencyParser
 | |
| > parser = DependencyParser(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#add_pipe).
 | |
| 
 | |
| | Name                          | Description                                                                                                                                                                                                                                                                                         |
 | |
| | ----------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `vocab`                       | The shared vocabulary. ~~Vocab~~                                                                                                                                                                                                                                                                    |
 | |
| | `model`                       | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~                                                                                                                                                                                |
 | |
| | `name`                        | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                                                                                                                                                                                                 |
 | |
| | `moves`                       | A list of transition names. Inferred from the data if not provided. ~~Optional[TransitionSystem]~~                                                                                                                                                                                                  |
 | |
| | _keyword-only_                |                                                                                                                                                                                                                                                                                                     |
 | |
| | `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~                                                 |
 | |
| | `learn_tokens`                | Whether to learn to merge subtokens that are split relative to the gold standard. Experimental. Defaults to `False`. ~~bool~~                                                                                                                                                                       |
 | |
| | `min_action_freq`             | The minimum frequency of labelled actions to retain. Rarer labelled actions have their label backed-off to "dep". While this primarily affects the label accuracy, it can also affect the attachment structure, as the labels are used to represent the pseudo-projectivity transformation. ~~int~~ |
 | |
| | `scorer`                      | The scoring method. Defaults to [`Scorer.score_deps`](/api/scorer#score_deps) for the attribute `"dep"` ignoring the labels `p` and `punct` and [`Scorer.score_spans`](/api/scorer/#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~                                                |
 | |
| 
 | |
| ## DependencyParser.\_\_call\_\_ {id="call",tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/dependencyparser#call) and
 | |
| [`pipe`](/api/dependencyparser#pipe) delegate to the
 | |
| [`predict`](/api/dependencyparser#predict) and
 | |
| [`set_annotations`](/api/dependencyparser#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > # This usually happens under the hood
 | |
| > processed = parser(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## DependencyParser.pipe {id="pipe",tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/dependencyparser#call) and
 | |
| [`pipe`](/api/dependencyparser#pipe) delegate to the
 | |
| [`predict`](/api/dependencyparser#predict) and
 | |
| [`set_annotations`](/api/dependencyparser#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > for doc in parser.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `docs`         | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## DependencyParser.initialize {id="initialize",tag="method",version="3"}
 | |
| 
 | |
| Initialize the component for training. `get_examples` should be a function that
 | |
| returns an iterable of [`Example`](/api/example) objects. **At least one example
 | |
| should be supplied.** The data examples are used to **initialize the model** of
 | |
| the component and can either be the full training data or a representative
 | |
| sample. Initialization includes validating the network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize) and lets you customize
 | |
| arguments it receives via the
 | |
| [`[initialize.components]`](/api/data-formats#config-initialize) block in the
 | |
| config.
 | |
| 
 | |
| <Infobox variant="warning" title="Changed in v3.0" id="begin_training">
 | |
| 
 | |
| This method was previously called `begin_training`.
 | |
| 
 | |
| </Infobox>
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > parser.initialize(lambda: examples, nlp=nlp)
 | |
| > ```
 | |
| >
 | |
| > ```ini
 | |
| > ### config.cfg
 | |
| > [initialize.components.parser]
 | |
| >
 | |
| > [initialize.components.parser.labels]
 | |
| > @readers = "spacy.read_labels.v1"
 | |
| > path = "corpus/labels/parser.json
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                                                                                                                                                                                                            |
 | |
| | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~                                                                                                                                                                                                                                             |
 | |
| | _keyword-only_ |                                                                                                                                                                                                                                                                                                                                                                                                                        |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                                                                                                                                                                                                                                                                   |
 | |
| | `labels`       | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Dict[str, Dict[str, int]]]~~ |
 | |
| 
 | |
| ## DependencyParser.predict {id="predict",tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
 | |
| modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > scores = parser.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                   |
 | |
| | ----------- | ------------------------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~                   |
 | |
| | **RETURNS** | A helper class for the parse state (internal). ~~StateClass~~ |
 | |
| 
 | |
| ## DependencyParser.set_annotations {id="set_annotations",tag="method"}
 | |
| 
 | |
| Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > scores = parser.predict([doc1, doc2])
 | |
| > parser.set_annotations([doc1, doc2], scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                                                                                                           |
 | |
| | -------- | ------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `docs`   | The documents to modify. ~~Iterable[Doc]~~                                                                                            |
 | |
| | `scores` | The scores to set, produced by `DependencyParser.predict`. Returns an internal helper class for the parse state. ~~List[StateClass]~~ |
 | |
| 
 | |
| ## DependencyParser.update {id="update",tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects, updating the pipe's
 | |
| model. Delegates to [`predict`](/api/dependencyparser#predict) and
 | |
| [`get_loss`](/api/dependencyparser#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = parser.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## DependencyParser.get_loss {id="get_loss",tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > scores = parser.predict([eg.predicted for eg in examples])
 | |
| > loss, d_loss = parser.get_loss(examples, scores)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                 |
 | |
| | ----------- | --------------------------------------------------------------------------- |
 | |
| | `examples`  | The batch of examples. ~~Iterable[Example]~~                                |
 | |
| | `scores`    | Scores representing the model's predictions. ~~StateClass~~                 |
 | |
| | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
 | |
| 
 | |
| ## DependencyParser.create_optimizer {id="create_optimizer",tag="method"}
 | |
| 
 | |
| Create an [`Optimizer`](https://thinc.ai/docs/api-optimizers) for the pipeline
 | |
| component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > optimizer = parser.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## DependencyParser.use_params {id="use_params",tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = DependencyParser(nlp.vocab)
 | |
| > with parser.use_params(optimizer.averages):
 | |
| >     parser.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## DependencyParser.add_label {id="add_label",tag="method"}
 | |
| 
 | |
| Add a new label to the pipe. Note that you don't have to call this method if you
 | |
| provide a **representative data sample** to the [`initialize`](#initialize)
 | |
| method. In this case, all labels found in the sample will be automatically added
 | |
| to the model, and the output dimension will be
 | |
| [inferred](/usage/layers-architectures#thinc-shape-inference) automatically.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > parser.add_label("MY_LABEL")
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                 |
 | |
| | ----------- | ----------------------------------------------------------- |
 | |
| | `label`     | The label to add. ~~str~~                                   |
 | |
| | **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | |
| 
 | |
| ## DependencyParser.set_output {id="set_output",tag="method"}
 | |
| 
 | |
| Change the output dimension of the component's model by calling the model's
 | |
| attribute `resize_output`. This is a function that takes the original model and
 | |
| the new output dimension `nO`, and changes the model in place. When resizing an
 | |
| already trained model, care should be taken to avoid the "catastrophic
 | |
| forgetting" problem.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > parser.set_output(512)
 | |
| > ```
 | |
| 
 | |
| | Name | Description                       |
 | |
| | ---- | --------------------------------- |
 | |
| | `nO` | The new output dimension. ~~int~~ |
 | |
| 
 | |
| ## DependencyParser.to_disk {id="to_disk",tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > parser.to_disk("/path/to/parser")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## DependencyParser.from_disk {id="from_disk",tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > parser.from_disk("/path/to/parser")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `DependencyParser` object. ~~DependencyParser~~                                    |
 | |
| 
 | |
| ## DependencyParser.to_bytes {id="to_bytes",tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > parser_bytes = parser.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `DependencyParser` object. ~~bytes~~                             |
 | |
| 
 | |
| ## DependencyParser.from_bytes {id="from_bytes",tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser_bytes = parser.to_bytes()
 | |
| > parser = nlp.add_pipe("parser")
 | |
| > parser.from_bytes(parser_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `DependencyParser` object. ~~DependencyParser~~                                         |
 | |
| 
 | |
| ## DependencyParser.labels {id="labels",tag="property"}
 | |
| 
 | |
| The labels currently added to the component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > parser.add_label("MY_LABEL")
 | |
| > assert "MY_LABEL" in parser.labels
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                            |
 | |
| | ----------- | ------------------------------------------------------ |
 | |
| | **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ |
 | |
| 
 | |
| ## DependencyParser.label_data {id="label_data",tag="property",version="3"}
 | |
| 
 | |
| The labels currently added to the component and their internal meta information.
 | |
| This is the data generated by [`init labels`](/api/cli#init-labels) and used by
 | |
| [`DependencyParser.initialize`](/api/dependencyparser#initialize) to initialize
 | |
| the model with a pre-defined label set.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > labels = parser.label_data
 | |
| > parser.initialize(lambda: [], nlp=nlp, labels=labels)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                     |
 | |
| | ----------- | ------------------------------------------------------------------------------- |
 | |
| | **RETURNS** | The label data added to the component. ~~Dict[str, Dict[str, Dict[str, int]]]~~ |
 | |
| 
 | |
| ## Serialization fields {id="serialization-fields"}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = parser.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |