mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 11:26:28 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
52 lines
1.5 KiB
Python
52 lines
1.5 KiB
Python
from typing import Iterator, Tuple, Union
|
|
|
|
from ...errors import Errors
|
|
from ...symbols import NOUN, PRON, PROPN
|
|
from ...tokens import Doc, Span
|
|
|
|
|
|
def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
|
|
"""
|
|
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
|
|
"""
|
|
labels = [
|
|
"nsubj",
|
|
"dobj",
|
|
"nsubjpass",
|
|
"pcomp",
|
|
"pobj",
|
|
"dative",
|
|
"appos",
|
|
"attr",
|
|
"ROOT",
|
|
]
|
|
doc = doclike.doc # Ensure works on both Doc and Span.
|
|
|
|
if not doc.has_annotation("DEP"):
|
|
raise ValueError(Errors.E029)
|
|
|
|
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
|
conj = doc.vocab.strings.add("conj")
|
|
np_label = doc.vocab.strings.add("NP")
|
|
prev_end = -1
|
|
for i, word in enumerate(doclike):
|
|
if word.pos not in (NOUN, PROPN, PRON):
|
|
continue
|
|
# Prevent nested chunks from being produced
|
|
if word.left_edge.i <= prev_end:
|
|
continue
|
|
if word.dep in np_deps:
|
|
prev_end = word.i
|
|
yield word.left_edge.i, word.i + 1, np_label
|
|
elif word.dep == conj:
|
|
head = word.head
|
|
while head.dep == conj and head.head.i < head.i:
|
|
head = head.head
|
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
|
if head.dep in np_deps:
|
|
prev_end = word.i
|
|
yield word.left_edge.i, word.i + 1, np_label
|
|
|
|
|
|
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}
|