mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* version bump to 3.0.0a16 * rename "gold" folder to "training" * rename 'annotation_setter' to 'set_extra_annotations' * formatting
		
			
				
	
	
		
			56 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pathlib import Path
 | 
						|
import plac
 | 
						|
import spacy
 | 
						|
from spacy.training import docs_to_json
 | 
						|
import srsly
 | 
						|
import sys
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("Model name. Defaults to 'en'.", "option", "m", str),
 | 
						|
    input_file=("Input file (jsonl)", "positional", None, Path),
 | 
						|
    output_dir=("Output directory", "positional", None, Path),
 | 
						|
    n_texts=("Number of texts to convert", "option", "t", int),
 | 
						|
)
 | 
						|
def convert(model="en", input_file=None, output_dir=None, n_texts=0):
 | 
						|
    # Load model with tokenizer + sentencizer only
 | 
						|
    nlp = spacy.load(model)
 | 
						|
    nlp.select_pipes(disable=nlp.pipe_names)
 | 
						|
    sentencizer = nlp.create_pipe("sentencizer")
 | 
						|
    nlp.add_pipe(sentencizer, first=True)
 | 
						|
 | 
						|
    texts = []
 | 
						|
    cats = []
 | 
						|
    count = 0
 | 
						|
 | 
						|
    if not input_file.exists():
 | 
						|
        print("Input file not found:", input_file)
 | 
						|
        sys.exit(1)
 | 
						|
    else:
 | 
						|
        with open(input_file) as fileh:
 | 
						|
            for line in fileh:
 | 
						|
                data = srsly.json_loads(line)
 | 
						|
                texts.append(data["text"])
 | 
						|
                cats.append(data["cats"])
 | 
						|
 | 
						|
    if output_dir is not None:
 | 
						|
        output_dir = Path(output_dir)
 | 
						|
        if not output_dir.exists():
 | 
						|
            output_dir.mkdir()
 | 
						|
    else:
 | 
						|
        output_dir = Path(".")
 | 
						|
 | 
						|
    docs = []
 | 
						|
    for i, doc in enumerate(nlp.pipe(texts)):
 | 
						|
        doc.cats = cats[i]
 | 
						|
        docs.append(doc)
 | 
						|
        if n_texts > 0 and count == n_texts:
 | 
						|
            break
 | 
						|
        count += 1
 | 
						|
 | 
						|
    srsly.write_json(output_dir / input_file.with_suffix(".json"), [docs_to_json(docs)])
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    plac.call(convert)
 |