mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Auto-format tests with black * Add flake8 config * Tidy up and remove unused imports * Fix redefinitions of test functions * Replace orths_and_spaces with words and spaces * Fix compatibility with pytest 4.0 * xfail test for now Test was previously overwritten by following test due to naming conflict, so failure wasn't reported * Unfail passing test * Only use fixture via arguments Fixes pytest 4.0 compatibility
		
			
				
	
	
		
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| import random
 | |
| import numpy.random
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline import TextCategorizer
 | |
| from spacy.tokens import Doc
 | |
| from spacy.gold import GoldParse
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Test is flakey when run with others")
 | |
| def test_simple_train():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(nlp.create_pipe("textcat"))
 | |
|     nlp.get_pipe("textcat").add_label("answer")
 | |
|     nlp.begin_training()
 | |
|     for i in range(5):
 | |
|         for text, answer in [
 | |
|             ("aaaa", 1.0),
 | |
|             ("bbbb", 0),
 | |
|             ("aa", 1.0),
 | |
|             ("bbbbbbbbb", 0.0),
 | |
|             ("aaaaaa", 1),
 | |
|         ]:
 | |
|             nlp.update([text], [{"cats": {"answer": answer}}])
 | |
|     doc = nlp("aaa")
 | |
|     assert "answer" in doc.cats
 | |
|     assert doc.cats["answer"] >= 0.5
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Test is flakey when run with others")
 | |
| def test_textcat_learns_multilabel():
 | |
|     random.seed(5)
 | |
|     numpy.random.seed(5)
 | |
|     docs = []
 | |
|     nlp = Language()
 | |
|     letters = ["a", "b", "c"]
 | |
|     for w1 in letters:
 | |
|         for w2 in letters:
 | |
|             cats = {letter: float(w2 == letter) for letter in letters}
 | |
|             docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
 | |
|     random.shuffle(docs)
 | |
|     model = TextCategorizer(nlp.vocab, width=8)
 | |
|     for letter in letters:
 | |
|         model.add_label(letter)
 | |
|     optimizer = model.begin_training()
 | |
|     for i in range(30):
 | |
|         losses = {}
 | |
|         Ys = [GoldParse(doc, cats=cats) for doc, cats in docs]
 | |
|         Xs = [doc for doc, cats in docs]
 | |
|         model.update(Xs, Ys, sgd=optimizer, losses=losses)
 | |
|         random.shuffle(docs)
 | |
|     for w1 in letters:
 | |
|         for w2 in letters:
 | |
|             doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
 | |
|             truth = {letter: w2 == letter for letter in letters}
 | |
|             model(doc)
 | |
|             for cat, score in doc.cats.items():
 | |
|                 if not truth[cat]:
 | |
|                     assert score < 0.5
 | |
|                 else:
 | |
|                     assert score > 0.5
 |