mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 01:06:33 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
387 lines
15 KiB
Python
387 lines
15 KiB
Python
import random
|
|
import shutil
|
|
import sys
|
|
from pathlib import Path
|
|
from timeit import default_timer as timer
|
|
from typing import (
|
|
IO,
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
|
|
from thinc.api import Config, Optimizer, constant, fix_random_seed, set_gpu_allocator
|
|
from wasabi import Printer
|
|
|
|
from ..errors import Errors
|
|
from ..schemas import ConfigSchemaTraining
|
|
from ..util import logger, registry, resolve_dot_names
|
|
from .example import Example
|
|
|
|
if TYPE_CHECKING:
|
|
from ..language import Language # noqa: F401
|
|
|
|
|
|
DIR_MODEL_BEST = "model-best"
|
|
DIR_MODEL_LAST = "model-last"
|
|
|
|
|
|
def train(
|
|
nlp: "Language",
|
|
output_path: Optional[Path] = None,
|
|
*,
|
|
use_gpu: int = -1,
|
|
stdout: IO = sys.stdout,
|
|
stderr: IO = sys.stderr,
|
|
) -> Tuple["Language", Optional[Path]]:
|
|
"""Train a pipeline.
|
|
|
|
nlp (Language): The initialized nlp object with the full config.
|
|
output_path (Optional[Path]): Optional output path to save trained model to.
|
|
use_gpu (int): Whether to train on GPU. Make sure to call require_gpu
|
|
before calling this function.
|
|
stdout (file): A file-like object to write output messages. To disable
|
|
printing, set to io.StringIO.
|
|
stderr (file): A second file-like object to write output messages. To disable
|
|
printing, set to io.StringIO.
|
|
|
|
RETURNS (tuple): The final nlp object and the path to the exported model.
|
|
"""
|
|
# We use no_print here so we can respect the stdout/stderr options.
|
|
msg = Printer(no_print=True)
|
|
# Create iterator, which yields out info after each optimization step.
|
|
config = nlp.config.interpolate()
|
|
if config["training"]["seed"] is not None:
|
|
fix_random_seed(config["training"]["seed"])
|
|
allocator = config["training"]["gpu_allocator"]
|
|
if use_gpu >= 0 and allocator:
|
|
set_gpu_allocator(allocator)
|
|
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
|
|
dot_names = [T["train_corpus"], T["dev_corpus"]]
|
|
train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
|
|
optimizer = T["optimizer"]
|
|
score_weights = T["score_weights"]
|
|
batcher = T["batcher"]
|
|
train_logger = T["logger"]
|
|
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
|
|
before_update = T["before_update"]
|
|
|
|
# Helper function to save checkpoints. This is a closure for convenience,
|
|
# to avoid passing in all the args all the time.
|
|
def save_checkpoint(is_best):
|
|
with nlp.use_params(optimizer.averages):
|
|
before_to_disk(nlp).to_disk(output_path / DIR_MODEL_LAST)
|
|
if is_best:
|
|
# Avoid saving twice (saving will be more expensive than
|
|
# the dir copy)
|
|
if (output_path / DIR_MODEL_BEST).exists():
|
|
shutil.rmtree(output_path / DIR_MODEL_BEST)
|
|
shutil.copytree(output_path / DIR_MODEL_LAST, output_path / DIR_MODEL_BEST)
|
|
|
|
# Components that shouldn't be updated during training
|
|
frozen_components = T["frozen_components"]
|
|
# Components that should set annotations on update
|
|
annotating_components = T["annotating_components"]
|
|
# Create iterator, which yields out info after each optimization step.
|
|
training_step_iterator = train_while_improving(
|
|
nlp,
|
|
optimizer,
|
|
create_train_batches(nlp, train_corpus, batcher, T["max_epochs"]),
|
|
create_evaluation_callback(nlp, dev_corpus, score_weights),
|
|
dropout=T["dropout"],
|
|
accumulate_gradient=T["accumulate_gradient"],
|
|
patience=T["patience"],
|
|
max_steps=T["max_steps"],
|
|
eval_frequency=T["eval_frequency"],
|
|
exclude=frozen_components,
|
|
annotating_components=annotating_components,
|
|
before_update=before_update,
|
|
)
|
|
clean_output_dir(output_path)
|
|
stdout.write(msg.info(f"Pipeline: {nlp.pipe_names}") + "\n")
|
|
if frozen_components:
|
|
stdout.write(msg.info(f"Frozen components: {frozen_components}") + "\n")
|
|
if annotating_components:
|
|
stdout.write(
|
|
msg.info(f"Set annotations on update for: {annotating_components}") + "\n"
|
|
)
|
|
stdout.write(msg.info(f"Initial learn rate: {optimizer.learn_rate}") + "\n")
|
|
with nlp.select_pipes(disable=frozen_components):
|
|
log_step, finalize_logger = train_logger(nlp, stdout, stderr)
|
|
try:
|
|
for batch, info, is_best_checkpoint in training_step_iterator:
|
|
if is_best_checkpoint is not None:
|
|
with nlp.select_pipes(disable=frozen_components):
|
|
update_meta(T, nlp, info)
|
|
if output_path is not None:
|
|
save_checkpoint(is_best_checkpoint)
|
|
info["output_path"] = str(output_path / DIR_MODEL_LAST)
|
|
log_step(info if is_best_checkpoint is not None else None)
|
|
except Exception as e:
|
|
if output_path is not None:
|
|
stdout.write(
|
|
msg.warn(
|
|
f"Aborting and saving the final best model. "
|
|
f"Encountered exception: {repr(e)}"
|
|
)
|
|
+ "\n"
|
|
)
|
|
raise e
|
|
finally:
|
|
finalize_logger()
|
|
if output_path is not None:
|
|
save_checkpoint(False)
|
|
# This will only run if we did't hit an error
|
|
if optimizer.averages:
|
|
nlp.use_params(optimizer.averages)
|
|
if output_path is not None:
|
|
stdout.write(
|
|
msg.good("Saved pipeline to output directory", output_path / DIR_MODEL_LAST)
|
|
+ "\n"
|
|
)
|
|
return (nlp, output_path / DIR_MODEL_LAST)
|
|
else:
|
|
return (nlp, None)
|
|
|
|
|
|
def train_while_improving(
|
|
nlp: "Language",
|
|
optimizer: Optimizer,
|
|
train_data,
|
|
evaluate,
|
|
*,
|
|
dropout: float,
|
|
eval_frequency: int,
|
|
accumulate_gradient: int,
|
|
patience: int,
|
|
max_steps: int,
|
|
exclude: List[str],
|
|
annotating_components: List[str],
|
|
before_update: Optional[Callable[["Language", Dict[str, Any]], None]],
|
|
):
|
|
"""Train until an evaluation stops improving. Works as a generator,
|
|
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
|
|
where info is a dict, and is_best_checkpoint is in [True, False, None] --
|
|
None indicating that the iteration was not evaluated as a checkpoint.
|
|
The evaluation is conducted by calling the evaluate callback.
|
|
|
|
Positional arguments:
|
|
nlp: The spaCy pipeline to evaluate.
|
|
optimizer: The optimizer callable.
|
|
train_data (Iterable[Batch]): A generator of batches, with the training
|
|
data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
|
|
data iterable needs to take care of iterating over the epochs and
|
|
shuffling.
|
|
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
|
|
The callback should take no arguments and return a tuple
|
|
`(main_score, other_scores)`. The main_score should be a float where
|
|
higher is better. other_scores can be any object.
|
|
|
|
Every iteration, the function yields out a tuple with:
|
|
|
|
* batch: A list of Example objects.
|
|
* info: A dict with various information about the last update (see below).
|
|
* is_best_checkpoint: A value in None, False, True, indicating whether this
|
|
was the best evaluation so far. You should use this to save the model
|
|
checkpoints during training. If None, evaluation was not conducted on
|
|
that iteration. False means evaluation was conducted, but a previous
|
|
evaluation was better.
|
|
|
|
The info dict provides the following information:
|
|
|
|
epoch (int): How many passes over the data have been completed.
|
|
step (int): How many steps have been completed.
|
|
score (float): The main score from the last evaluation.
|
|
other_scores: : The other scores from the last evaluation.
|
|
losses: The accumulated losses throughout training.
|
|
checkpoints: A list of previous results, where each result is a
|
|
(score, step, epoch) tuple.
|
|
"""
|
|
if isinstance(dropout, float):
|
|
dropouts = constant(dropout)
|
|
else:
|
|
dropouts = dropout
|
|
results = []
|
|
losses: Dict[str, float] = {}
|
|
words_seen = 0
|
|
start_time = timer()
|
|
for step, (epoch, batch) in enumerate(train_data):
|
|
if before_update:
|
|
before_update_args = {"step": step, "epoch": epoch}
|
|
before_update(nlp, before_update_args)
|
|
dropout = next(dropouts) # type: ignore
|
|
for subbatch in subdivide_batch(batch, accumulate_gradient):
|
|
nlp.update(
|
|
subbatch,
|
|
drop=dropout,
|
|
losses=losses,
|
|
sgd=False, # type: ignore[arg-type]
|
|
exclude=exclude,
|
|
annotates=annotating_components,
|
|
)
|
|
# TODO: refactor this so we don't have to run it separately in here
|
|
for name, proc in nlp.pipeline:
|
|
if (
|
|
name not in exclude
|
|
and hasattr(proc, "is_trainable")
|
|
and proc.is_trainable
|
|
and proc.model not in (True, False, None) # type: ignore[attr-defined]
|
|
):
|
|
proc.finish_update(optimizer) # type: ignore[attr-defined]
|
|
optimizer.step_schedules()
|
|
if not (step % eval_frequency):
|
|
if optimizer.averages:
|
|
with nlp.use_params(optimizer.averages):
|
|
score, other_scores = evaluate()
|
|
else:
|
|
score, other_scores = evaluate()
|
|
results.append((score, step))
|
|
is_best_checkpoint = score == max(results)[0]
|
|
else:
|
|
score, other_scores = (None, None)
|
|
is_best_checkpoint = None
|
|
words_seen += sum(len(eg) for eg in batch)
|
|
info = {
|
|
"epoch": epoch,
|
|
"step": step,
|
|
"score": score,
|
|
"other_scores": other_scores,
|
|
"losses": losses,
|
|
"checkpoints": results,
|
|
"seconds": int(timer() - start_time),
|
|
"words": words_seen,
|
|
}
|
|
yield batch, info, is_best_checkpoint
|
|
if is_best_checkpoint is not None:
|
|
losses = {}
|
|
# Stop if no improvement in `patience` updates (if specified)
|
|
# Negate step value so that the earliest best step is chosen for the
|
|
# same score, i.e. (1.0, 100) is chosen over (1.0, 200)
|
|
best_result = max((r_score, -r_step) for r_score, r_step in results)
|
|
best_step = -best_result[1]
|
|
if patience and (step - best_step) >= patience:
|
|
break
|
|
# Stop if we've exhausted our max steps (if specified)
|
|
if max_steps and step >= max_steps:
|
|
break
|
|
|
|
|
|
def subdivide_batch(batch, accumulate_gradient):
|
|
batch = list(batch)
|
|
batch.sort(key=lambda eg: len(eg.predicted))
|
|
sub_len = len(batch) // accumulate_gradient
|
|
start = 0
|
|
for i in range(accumulate_gradient):
|
|
subbatch = batch[start : start + sub_len]
|
|
if subbatch:
|
|
yield subbatch
|
|
start += len(subbatch)
|
|
subbatch = batch[start:]
|
|
if subbatch:
|
|
yield subbatch
|
|
|
|
|
|
def create_evaluation_callback(
|
|
nlp: "Language", dev_corpus: Callable, weights: Dict[str, float]
|
|
) -> Callable[[], Tuple[float, Dict[str, float]]]:
|
|
weights = {key: value for key, value in weights.items() if value is not None}
|
|
|
|
def evaluate() -> Tuple[float, Dict[str, float]]:
|
|
nonlocal weights
|
|
try:
|
|
scores = nlp.evaluate(dev_corpus(nlp))
|
|
except KeyError as e:
|
|
raise KeyError(Errors.E900.format(pipeline=nlp.pipe_names)) from e
|
|
# Calculate a weighted sum based on score_weights for the main score.
|
|
# We can only consider scores that are ints/floats, not dicts like
|
|
# entity scores per type etc.
|
|
scores = {key: value for key, value in scores.items() if value is not None}
|
|
weights = {key: value for key, value in weights.items() if key in scores}
|
|
for key, value in scores.items():
|
|
if key in weights and not isinstance(value, (int, float)):
|
|
raise ValueError(Errors.E915.format(name=key, score_type=type(value)))
|
|
try:
|
|
weighted_score = sum(
|
|
scores.get(s, 0.0) * weights.get(s, 0.0) for s in weights
|
|
)
|
|
except KeyError as e:
|
|
keys = list(scores.keys())
|
|
err = Errors.E983.format(dict="score_weights", key=str(e), keys=keys)
|
|
raise KeyError(err) from None
|
|
return weighted_score, scores
|
|
|
|
return evaluate
|
|
|
|
|
|
def create_train_batches(
|
|
nlp: "Language",
|
|
corpus: Callable[["Language"], Iterable[Example]],
|
|
batcher: Callable[[Iterable[Example]], Iterable[Example]],
|
|
max_epochs: int,
|
|
):
|
|
epoch = 0
|
|
if max_epochs >= 0:
|
|
examples = list(corpus(nlp)) # type: Iterable[Example]
|
|
if not examples:
|
|
# Raise error if no data
|
|
raise ValueError(Errors.E986)
|
|
while max_epochs < 1 or epoch != max_epochs:
|
|
if max_epochs >= 0:
|
|
random.shuffle(examples) # type: ignore
|
|
else:
|
|
examples = corpus(nlp)
|
|
for batch in batcher(examples):
|
|
yield epoch, batch
|
|
epoch += 1
|
|
|
|
|
|
def update_meta(
|
|
training: Union[Dict[str, Any], Config], nlp: "Language", info: Dict[str, Any]
|
|
) -> None:
|
|
nlp.meta["performance"] = {}
|
|
for metric in training["score_weights"]:
|
|
if metric is not None:
|
|
nlp.meta["performance"][metric] = info["other_scores"].get(metric, 0.0)
|
|
for pipe_name in nlp.pipe_names:
|
|
if pipe_name in info["losses"]:
|
|
nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
|
|
|
|
|
|
def create_before_to_disk_callback(
|
|
callback: Optional[Callable[["Language"], "Language"]]
|
|
) -> Callable[["Language"], "Language"]:
|
|
from ..language import Language # noqa: F811
|
|
|
|
def before_to_disk(nlp: Language) -> Language:
|
|
if not callback:
|
|
return nlp
|
|
modified_nlp = callback(nlp)
|
|
if not isinstance(modified_nlp, Language):
|
|
err = Errors.E914.format(name="before_to_disk", value=type(modified_nlp))
|
|
raise ValueError(err)
|
|
return modified_nlp
|
|
|
|
return before_to_disk
|
|
|
|
|
|
def clean_output_dir(path: Optional[Path]) -> None:
|
|
"""Remove an existing output directory. Typically used to ensure that that
|
|
a directory like model-best and its contents aren't just being overwritten
|
|
by nlp.to_disk, which could preserve existing subdirectories (e.g.
|
|
components that don't exist anymore).
|
|
"""
|
|
if path is not None and path.exists():
|
|
for subdir in [path / DIR_MODEL_BEST, path / DIR_MODEL_LAST]:
|
|
if subdir.exists():
|
|
try:
|
|
shutil.rmtree(str(subdir))
|
|
logger.debug("Removed existing output directory: %s", subdir)
|
|
except Exception as e:
|
|
raise IOError(Errors.E901.format(path=path)) from e
|