mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			189 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import division
 | 
						|
from numpy import average, zeros, outer, random, exp, sqrt, concatenate, argmax
 | 
						|
import numpy
 | 
						|
 | 
						|
from .util import Scorer
 | 
						|
 | 
						|
 | 
						|
class Adagrad(object): 
 | 
						|
    def __init__(self, dim, lr):
 | 
						|
        self.dim = dim
 | 
						|
        self.eps = 1e-3
 | 
						|
        # initial learning rate
 | 
						|
        self.learning_rate = lr
 | 
						|
        # stores sum of squared gradients 
 | 
						|
        self.h = zeros(self.dim)
 | 
						|
        self._curr_rate = zeros(self.h.shape)
 | 
						|
 | 
						|
    def rescale(self, gradient):
 | 
						|
        self._curr_rate.fill(0)
 | 
						|
        self.h += gradient ** 2
 | 
						|
        self._curr_rate = self.learning_rate / (sqrt(self.h) + self.eps)
 | 
						|
        return self._curr_rate * gradient
 | 
						|
 | 
						|
    def reset_weights(self):
 | 
						|
        self.h = zeros(self.dim)
 | 
						|
 | 
						|
 | 
						|
class Params(object):
 | 
						|
    @classmethod
 | 
						|
    def zero(cls, depth, n_embed, n_hidden, n_labels, n_vocab):
 | 
						|
        return cls(depth, n_embed, n_hidden, n_labels, n_vocab, lambda x: zeros((x,)))
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def random(cls, depth, nE, nH, nL, nV):
 | 
						|
        return cls(depth, nE, nH, nL, nV, lambda x: (random.rand(x) * 2 - 1) * 0.08)
 | 
						|
 | 
						|
    def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, initializer):
 | 
						|
        nE = n_embed; nH = n_hidden; nL = n_labels; nV = n_vocab
 | 
						|
        n_weights = sum([
 | 
						|
            (nE * nH) + nH, 
 | 
						|
            (nH * nH  + nH) * depth,
 | 
						|
            (nH * nL) + nL,
 | 
						|
            (nV * nE)
 | 
						|
        ])
 | 
						|
        self.data = initializer(n_weights)
 | 
						|
        self.W = []
 | 
						|
        self.b = []
 | 
						|
        i = self._add_layer(0, nE, nH)
 | 
						|
        for _ in range(1, depth):
 | 
						|
            i = self._add_layer(i, nH, nH)
 | 
						|
        i = self._add_layer(i, nL, nH)
 | 
						|
        self.E = self.data[i : i + (nV * nE)].reshape((nV, nE))
 | 
						|
        self.E.fill(0)
 | 
						|
 | 
						|
    def _add_layer(self, start, x, y):
 | 
						|
        end = start + (x * y)
 | 
						|
        self.W.append(self.data[start : end].reshape((x, y)))
 | 
						|
        self.b.append(self.data[end : end + x].reshape((x, )))
 | 
						|
        return end + x
 | 
						|
 | 
						|
 | 
						|
def softmax(actvn, W, b):
 | 
						|
    w = W.dot(actvn) + b
 | 
						|
    ew = exp(w - max(w))
 | 
						|
    return (ew / sum(ew)).ravel()
 | 
						|
 | 
						|
 | 
						|
def relu(actvn, W, b):
 | 
						|
    x = W.dot(actvn) + b
 | 
						|
    return x * (x > 0)
 | 
						|
 | 
						|
 | 
						|
def d_relu(x):
 | 
						|
    return x > 0
 | 
						|
 | 
						|
 | 
						|
class Network(object):
 | 
						|
    def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, rho=1e-4, lr=0.005):
 | 
						|
        self.depth = depth
 | 
						|
        self.n_embed = n_embed
 | 
						|
        self.n_hidden = n_hidden
 | 
						|
        self.n_labels = n_labels
 | 
						|
        self.n_vocab = n_vocab
 | 
						|
 | 
						|
        self.params = Params.random(depth, n_embed, n_hidden, n_labels, n_vocab)
 | 
						|
        self.gradient = Params.zero(depth, n_embed, n_hidden, n_labels, n_vocab)
 | 
						|
        self.adagrad = Adagrad(self.params.data.shape, lr)
 | 
						|
        self.seen_words = {}
 | 
						|
 
 | 
						|
        self.pred = zeros(self.n_labels)
 | 
						|
        self.actvn = zeros((self.depth, self.n_hidden))
 | 
						|
        self.input_vector = zeros((self.n_embed, ))
 | 
						|
    
 | 
						|
    def forward(self, word_ids, embeddings):
 | 
						|
        self.input_vector.fill(0)
 | 
						|
        self.input_vector += sum(embeddings)
 | 
						|
        # Apply the fine-tuning we've learned
 | 
						|
        for id_ in word_ids:
 | 
						|
            if id_ < self.n_vocab:
 | 
						|
                self.input_vector += self.params.E[id_]
 | 
						|
        # Average
 | 
						|
        self.input_vector /= len(embeddings)
 | 
						|
        prev = self.input_vector
 | 
						|
        for i in range(self.depth):
 | 
						|
            self.actvn[i] = relu(prev, self.params.W[i], self.params.b[i])
 | 
						|
            return x * (x > 0)
 | 
						|
 | 
						|
 | 
						|
            prev = self.actvn[i]
 | 
						|
        self.pred = softmax(self.actvn[-1], self.params.W[-1], self.params.b[-1])
 | 
						|
        return argmax(self.pred)
 | 
						|
 | 
						|
    def backward(self, word_ids, label):
 | 
						|
        target = zeros(self.n_labels)
 | 
						|
        target[label] = 1.0
 | 
						|
        D = self.pred - target
 | 
						|
 | 
						|
        for i in range(self.depth, 0, -1):
 | 
						|
            self.gradient.b[i] += D
 | 
						|
            self.gradient.W[i] += outer(D, self.actvn[i-1])
 | 
						|
            D = d_relu(self.actvn[i-1]) * self.params.W[i].T.dot(D)
 | 
						|
 | 
						|
        self.gradient.b[0] += D
 | 
						|
        self.gradient.W[0] += outer(D, self.input_vector)
 | 
						|
 | 
						|
        grad = self.params.W[0].T.dot(D).reshape((self.n_embed,)) / len(word_ids)
 | 
						|
        for word_id in word_ids:
 | 
						|
            if word_id < self.n_vocab:
 | 
						|
                self.gradient.E[word_id] += grad
 | 
						|
                self.seen_words[word_id] = self.seen_words.get(word_id, 0) + 1
 | 
						|
 | 
						|
    def update(self, rho, n):
 | 
						|
        # L2 Regularization
 | 
						|
        for i in range(self.depth):
 | 
						|
            self.gradient.W[i] += self.params.W[i] * rho
 | 
						|
            self.gradient.b[i] += self.params.b[i] * rho
 | 
						|
        # Do word embedding tuning
 | 
						|
        for word_id, freq in self.seen_words.items():
 | 
						|
            self.gradient.E[word_id] += (self.params.E[word_id] * freq) * rho
 | 
						|
 
 | 
						|
        update = self.gradient.data / n
 | 
						|
        update = self.adagrad.rescale(update)
 | 
						|
        self.params.data -= update
 | 
						|
        self.gradient.data.fill(0)
 | 
						|
        self.seen_words = {}
 | 
						|
 | 
						|
 | 
						|
def get_words(doc, dropout_rate, n_vocab):
 | 
						|
    mask = random.rand(len(doc)) > dropout_rate
 | 
						|
    word_ids = []
 | 
						|
    embeddings = []
 | 
						|
    for word in doc:
 | 
						|
        if mask[word.i] and not word.is_punct:
 | 
						|
            embeddings.append(word.vector)
 | 
						|
            word_ids.append(word.orth)
 | 
						|
    # all examples must have at least one word
 | 
						|
    if not embeddings:
 | 
						|
        return [w.orth for w in doc], [w.vector for w in doc]
 | 
						|
    else:
 | 
						|
        return word_ids, embeddings
 | 
						|
 | 
						|
 | 
						|
def train(dataset, n_embed, n_hidden, n_labels, n_vocab, depth, dropout_rate, rho,
 | 
						|
          n_iter, save_model):
 | 
						|
    model = Network(depth, n_embed, n_hidden, n_labels, n_vocab)
 | 
						|
    best_acc = 0
 | 
						|
    for epoch in range(n_iter):
 | 
						|
        train_score = Scorer()
 | 
						|
        # create mini-batches
 | 
						|
        for batch in dataset.batches(dataset.train):
 | 
						|
            for doc, label in batch:
 | 
						|
                if len(doc) == 0:
 | 
						|
                    continue
 | 
						|
                word_ids, embeddings = get_words(doc, dropout_rate, n_vocab)
 | 
						|
                guess = model.forward(word_ids, embeddings)
 | 
						|
                model.backward(word_ids, label)
 | 
						|
                train_score += guess == label
 | 
						|
            model.update(rho, len(batch))
 | 
						|
        test_score = Scorer()
 | 
						|
        for doc, label in dataset.dev:
 | 
						|
            word_ids, embeddings = get_words(doc, 0.0, n_vocab)
 | 
						|
            guess = model.forward(word_ids, embeddings)
 | 
						|
            test_score += guess == label
 | 
						|
        if test_score.true >= best_acc:
 | 
						|
            best_acc = test_score.true
 | 
						|
            save_model(epoch, model.params.data)
 | 
						|
        print "%d\t%s\t%s" % (epoch, train_score, test_score)
 | 
						|
    return model
 |