mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Allow adding pipeline components from source model * Config: name -> component * Improve error messages * Fix error and test * Add frozen components and exclude logic * Remove exclude from Language.evaluate * Init sourced components with current vocab * Fix error codes
		
			
				
	
	
		
			134 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			INI
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			INI
		
	
	
	
	
	
| [paths]
 | |
| train = ""
 | |
| dev = ""
 | |
| raw = null
 | |
| init_tok2vec = null
 | |
| 
 | |
| [system]
 | |
| seed = 0
 | |
| use_pytorch_for_gpu_memory = false
 | |
| 
 | |
| [training]
 | |
| seed = ${system:seed}
 | |
| dropout = 0.1
 | |
| init_tok2vec = ${paths:init_tok2vec}
 | |
| vectors = null
 | |
| accumulate_gradient = 1
 | |
| max_steps = 0
 | |
| max_epochs = 0
 | |
| patience = 10000
 | |
| eval_frequency = 200
 | |
| score_weights = {"dep_las": 0.4, "ents_f": 0.4, "tag_acc": 0.2}
 | |
| frozen_components = []
 | |
| 
 | |
| [training.train_corpus]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths:train}
 | |
| gold_preproc = true
 | |
| max_length = 0
 | |
| limit = 0
 | |
| 
 | |
| [training.dev_corpus]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths:dev}
 | |
| gold_preproc = ${training.read_train:gold_preproc}
 | |
| max_length = 0
 | |
| limit = 0
 | |
| 
 | |
| [training.batcher]
 | |
| @batchers = "batch_by_words.v1"
 | |
| discard_oversize = false
 | |
| tolerance = 0.2
 | |
| 
 | |
| [training.batcher.size]
 | |
| @schedules = "compounding.v1"
 | |
| start = 100
 | |
| stop = 1000
 | |
| compound = 1.001
 | |
| 
 | |
| [training.optimizer]
 | |
| @optimizers = "Adam.v1"
 | |
| beta1 = 0.9
 | |
| beta2 = 0.999
 | |
| L2_is_weight_decay = true
 | |
| L2 = 0.01
 | |
| grad_clip = 1.0
 | |
| use_averages = false
 | |
| eps = 1e-8
 | |
| learn_rate = 0.001
 | |
| 
 | |
| [nlp]
 | |
| lang = "en"
 | |
| load_vocab_data = false
 | |
| pipeline = ["tok2vec", "ner", "tagger", "parser"]
 | |
| 
 | |
| [nlp.tokenizer]
 | |
| @tokenizers = "spacy.Tokenizer.v1"
 | |
| 
 | |
| [nlp.lemmatizer]
 | |
| @lemmatizers = "spacy.Lemmatizer.v1"
 | |
| 
 | |
| [components]
 | |
| 
 | |
| [components.tok2vec]
 | |
| factory = "tok2vec"
 | |
| 
 | |
| [components.ner]
 | |
| factory = "ner"
 | |
| learn_tokens = false
 | |
| min_action_freq = 1
 | |
| 
 | |
| [components.tagger]
 | |
| factory = "tagger"
 | |
| 
 | |
| [components.parser]
 | |
| factory = "parser"
 | |
| learn_tokens = false
 | |
| min_action_freq = 30
 | |
| 
 | |
| [components.tagger.model]
 | |
| @architectures = "spacy.Tagger.v1"
 | |
| 
 | |
| [components.tagger.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| 
 | |
| [components.parser.model]
 | |
| @architectures = "spacy.TransitionBasedParser.v1"
 | |
| nr_feature_tokens = 8
 | |
| hidden_width = 128
 | |
| maxout_pieces = 2
 | |
| use_upper = true
 | |
| 
 | |
| [components.parser.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| 
 | |
| [components.ner.model]
 | |
| @architectures = "spacy.TransitionBasedParser.v1"
 | |
| nr_feature_tokens = 3
 | |
| hidden_width = 128
 | |
| maxout_pieces = 2
 | |
| use_upper = true
 | |
| 
 | |
| [components.ner.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| 
 | |
| [components.tok2vec.model]
 | |
| @architectures = "spacy.Tok2Vec.v1"
 | |
| 
 | |
| [components.tok2vec.model.embed]
 | |
| @architectures = "spacy.MultiHashEmbed.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| rows = 2000
 | |
| also_embed_subwords = true
 | |
| also_use_static_vectors = false
 | |
| 
 | |
| [components.tok2vec.model.encode]
 | |
| @architectures = "spacy.MaxoutWindowEncoder.v1"
 | |
| width = 96
 | |
| depth = 4
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 |