mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Add TextCatReduce.v1 This is a textcat classifier that pools the vectors generated by a tok2vec implementation and then applies a classifier to the pooled representation. Three reductions are supported for pooling: first, max, and mean. When multiple reductions are enabled, the reductions are concatenated before providing them to the classification layer. This model is a generalization of the TextCatCNN model, which only supports mean reductions and is a bit of a misnomer, because it can also be used with transformers. This change also reimplements TextCatCNN.v2 using the new TextCatReduce.v1 layer. * Doc fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fully specify `TextCatCNN` <-> `TextCatReduce` equivalence * Move TextCatCNN docs to legacy, in prep for moving to spacy-legacy * Add back a test for TextCatCNN.v2 * Replace TextCatCNN in pipe configurations and templates * Add an infobox to the `TextCatReduce` section with an `TextCatCNN` anchor * Add last reduction (`use_reduce_last`) * Remove non-working TextCatCNN Netlify redirect * Revert layer changes for the quickstart * Revert one more quickstart change * Remove unused import * Fix docstring * Fix setting name in error message --------- Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			302 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import List
 | |
| 
 | |
| import numpy
 | |
| import pytest
 | |
| from numpy.testing import assert_array_almost_equal, assert_array_equal
 | |
| from thinc.api import (
 | |
|     Adam,
 | |
|     Logistic,
 | |
|     Ragged,
 | |
|     Relu,
 | |
|     chain,
 | |
|     fix_random_seed,
 | |
|     reduce_mean,
 | |
|     set_dropout_rate,
 | |
| )
 | |
| 
 | |
| from spacy.lang.en import English
 | |
| from spacy.lang.en.examples import sentences as EN_SENTENCES
 | |
| from spacy.ml.extract_spans import _get_span_indices, extract_spans
 | |
| from spacy.ml.models import (
 | |
|     MaxoutWindowEncoder,
 | |
|     MultiHashEmbed,
 | |
|     build_bow_text_classifier,
 | |
|     build_simple_cnn_text_classifier,
 | |
|     build_spancat_model,
 | |
|     build_Tok2Vec_model,
 | |
| )
 | |
| from spacy.ml.staticvectors import StaticVectors
 | |
| from spacy.util import registry
 | |
| 
 | |
| 
 | |
| def get_textcat_bow_kwargs():
 | |
|     return {
 | |
|         "exclusive_classes": True,
 | |
|         "ngram_size": 1,
 | |
|         "no_output_layer": False,
 | |
|         "nO": 34,
 | |
|     }
 | |
| 
 | |
| 
 | |
| def get_textcat_cnn_kwargs():
 | |
|     return {"tok2vec": make_test_tok2vec(), "exclusive_classes": False, "nO": 13}
 | |
| 
 | |
| 
 | |
| def get_all_params(model):
 | |
|     params = []
 | |
|     for node in model.walk():
 | |
|         for name in node.param_names:
 | |
|             params.append(node.get_param(name).ravel())
 | |
|     return node.ops.xp.concatenate(params)
 | |
| 
 | |
| 
 | |
| def get_docs():
 | |
|     nlp = English()
 | |
|     return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)]))
 | |
| 
 | |
| 
 | |
| def get_gradient(model, Y):
 | |
|     if isinstance(Y, model.ops.xp.ndarray):
 | |
|         dY = model.ops.alloc(Y.shape, dtype=Y.dtype)
 | |
|         dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape)
 | |
|         return dY
 | |
|     elif isinstance(Y, List):
 | |
|         return [get_gradient(model, y) for y in Y]
 | |
|     else:
 | |
|         raise ValueError(f"Could not get gradient for type {type(Y)}")
 | |
| 
 | |
| 
 | |
| def get_tok2vec_kwargs():
 | |
|     # This actually creates models, so seems best to put it in a function.
 | |
|     return {
 | |
|         "embed": MultiHashEmbed(
 | |
|             width=32,
 | |
|             rows=[500, 500, 500],
 | |
|             attrs=["NORM", "PREFIX", "SHAPE"],
 | |
|             include_static_vectors=False,
 | |
|         ),
 | |
|         "encode": MaxoutWindowEncoder(
 | |
|             width=32, depth=2, maxout_pieces=2, window_size=1
 | |
|         ),
 | |
|     }
 | |
| 
 | |
| 
 | |
| def make_test_tok2vec():
 | |
|     return build_Tok2Vec_model(**get_tok2vec_kwargs())
 | |
| 
 | |
| 
 | |
| def test_multi_hash_embed():
 | |
|     embed = MultiHashEmbed(
 | |
|         width=32,
 | |
|         rows=[500, 500, 500],
 | |
|         attrs=["NORM", "PREFIX", "SHAPE"],
 | |
|         include_static_vectors=False,
 | |
|     )
 | |
|     hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
 | |
|     assert len(hash_embeds) == 3
 | |
|     # Check they look at different columns.
 | |
|     assert list(sorted(he.attrs["column"] for he in hash_embeds)) == [0, 1, 2]
 | |
|     # Check they use different seeds
 | |
|     assert len(set(he.attrs["seed"] for he in hash_embeds)) == 3
 | |
|     # Check they all have the same number of rows
 | |
|     assert [he.get_dim("nV") for he in hash_embeds] == [500, 500, 500]
 | |
|     # Now try with different row factors
 | |
|     embed = MultiHashEmbed(
 | |
|         width=32,
 | |
|         rows=[1000, 50, 250],
 | |
|         attrs=["NORM", "PREFIX", "SHAPE"],
 | |
|         include_static_vectors=False,
 | |
|     )
 | |
|     hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
 | |
|     assert [he.get_dim("nV") for he in hash_embeds] == [1000, 50, 250]
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "seed,model_func,kwargs",
 | |
|     [
 | |
|         (0, build_Tok2Vec_model, get_tok2vec_kwargs()),
 | |
|         (0, build_bow_text_classifier, get_textcat_bow_kwargs()),
 | |
|         (0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs()),
 | |
|     ],
 | |
| )
 | |
| def test_models_initialize_consistently(seed, model_func, kwargs):
 | |
|     fix_random_seed(seed)
 | |
|     model1 = model_func(**kwargs)
 | |
|     model1.initialize()
 | |
|     fix_random_seed(seed)
 | |
|     model2 = model_func(**kwargs)
 | |
|     model2.initialize()
 | |
|     params1 = get_all_params(model1)
 | |
|     params2 = get_all_params(model2)
 | |
|     assert_array_equal(model1.ops.to_numpy(params1), model2.ops.to_numpy(params2))
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "seed,model_func,kwargs,get_X",
 | |
|     [
 | |
|         (0, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
 | |
|         (0, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs),
 | |
|         (0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
 | |
|     ],
 | |
| )
 | |
| def test_models_predict_consistently(seed, model_func, kwargs, get_X):
 | |
|     fix_random_seed(seed)
 | |
|     model1 = model_func(**kwargs).initialize()
 | |
|     Y1 = model1.predict(get_X())
 | |
|     fix_random_seed(seed)
 | |
|     model2 = model_func(**kwargs).initialize()
 | |
|     Y2 = model2.predict(get_X())
 | |
| 
 | |
|     if model1.has_ref("tok2vec"):
 | |
|         tok2vec1 = model1.get_ref("tok2vec").predict(get_X())
 | |
|         tok2vec2 = model2.get_ref("tok2vec").predict(get_X())
 | |
|         for i in range(len(tok2vec1)):
 | |
|             for j in range(len(tok2vec1[i])):
 | |
|                 assert_array_equal(
 | |
|                     numpy.asarray(model1.ops.to_numpy(tok2vec1[i][j])),
 | |
|                     numpy.asarray(model2.ops.to_numpy(tok2vec2[i][j])),
 | |
|                 )
 | |
| 
 | |
|     try:
 | |
|         Y1 = model1.ops.to_numpy(Y1)
 | |
|         Y2 = model2.ops.to_numpy(Y2)
 | |
|     except Exception:
 | |
|         pass
 | |
|     if isinstance(Y1, numpy.ndarray):
 | |
|         assert_array_equal(Y1, Y2)
 | |
|     elif isinstance(Y1, List):
 | |
|         assert len(Y1) == len(Y2)
 | |
|         for y1, y2 in zip(Y1, Y2):
 | |
|             try:
 | |
|                 y1 = model1.ops.to_numpy(y1)
 | |
|                 y2 = model2.ops.to_numpy(y2)
 | |
|             except Exception:
 | |
|                 pass
 | |
|             assert_array_equal(y1, y2)
 | |
|     else:
 | |
|         raise ValueError(f"Could not compare type {type(Y1)}")
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "seed,dropout,model_func,kwargs,get_X",
 | |
|     [
 | |
|         (0, 0.2, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
 | |
|         (0, 0.2, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs),
 | |
|         (0, 0.2, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
 | |
|     ],
 | |
| )
 | |
| def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X):
 | |
|     def get_updated_model():
 | |
|         fix_random_seed(seed)
 | |
|         optimizer = Adam(0.001)
 | |
|         model = model_func(**kwargs).initialize()
 | |
|         initial_params = get_all_params(model)
 | |
|         set_dropout_rate(model, dropout)
 | |
|         for _ in range(5):
 | |
|             Y, get_dX = model.begin_update(get_X())
 | |
|             dY = get_gradient(model, Y)
 | |
|             get_dX(dY)
 | |
|             model.finish_update(optimizer)
 | |
|         updated_params = get_all_params(model)
 | |
|         with pytest.raises(AssertionError):
 | |
|             assert_array_equal(
 | |
|                 model.ops.to_numpy(initial_params), model.ops.to_numpy(updated_params)
 | |
|             )
 | |
|         return model
 | |
| 
 | |
|     model1 = get_updated_model()
 | |
|     model2 = get_updated_model()
 | |
|     assert_array_almost_equal(
 | |
|         model1.ops.to_numpy(get_all_params(model1)),
 | |
|         model2.ops.to_numpy(get_all_params(model2)),
 | |
|         decimal=5,
 | |
|     )
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("model_func,kwargs", [(StaticVectors, {"nO": 128, "nM": 300})])
 | |
| def test_empty_docs(model_func, kwargs):
 | |
|     nlp = English()
 | |
|     model = model_func(**kwargs).initialize()
 | |
|     # Test the layer can be called successfully with 0, 1 and 2 empty docs.
 | |
|     for n_docs in range(3):
 | |
|         docs = [nlp("") for _ in range(n_docs)]
 | |
|         # Test predict
 | |
|         model.predict(docs)
 | |
|         # Test backprop
 | |
|         output, backprop = model.begin_update(docs)
 | |
|         backprop(output)
 | |
| 
 | |
| 
 | |
| def test_init_extract_spans():
 | |
|     extract_spans().initialize()
 | |
| 
 | |
| 
 | |
| def test_extract_spans_span_indices():
 | |
|     model = extract_spans().initialize()
 | |
|     spans = Ragged(
 | |
|         model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"),
 | |
|         model.ops.asarray([2, 1], dtype="i"),
 | |
|     )
 | |
|     x_lengths = model.ops.asarray([5, 10], dtype="i")
 | |
|     indices = _get_span_indices(model.ops, spans, x_lengths)
 | |
|     assert list(indices) == [0, 1, 2, 2, 10, 11]
 | |
| 
 | |
| 
 | |
| def test_extract_spans_forward_backward():
 | |
|     model = extract_spans().initialize()
 | |
|     X = Ragged(model.ops.alloc2f(15, 4), model.ops.asarray([5, 10], dtype="i"))
 | |
|     spans = Ragged(
 | |
|         model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"),
 | |
|         model.ops.asarray([2, 1], dtype="i"),
 | |
|     )
 | |
|     Y, backprop = model.begin_update((X, spans))
 | |
|     assert list(Y.lengths) == [3, 1, 2]
 | |
|     assert Y.dataXd.shape == (6, 4)
 | |
|     dX, spans2 = backprop(Y)
 | |
|     assert spans2 is spans
 | |
|     assert dX.dataXd.shape == X.dataXd.shape
 | |
|     assert list(dX.lengths) == list(X.lengths)
 | |
| 
 | |
| 
 | |
| def test_spancat_model_init():
 | |
|     model = build_spancat_model(
 | |
|         build_Tok2Vec_model(**get_tok2vec_kwargs()), reduce_mean(), Logistic()
 | |
|     )
 | |
|     model.initialize()
 | |
| 
 | |
| 
 | |
| def test_spancat_model_forward_backward(nO=5):
 | |
|     tok2vec = build_Tok2Vec_model(**get_tok2vec_kwargs())
 | |
|     docs = get_docs()
 | |
|     spans_list = []
 | |
|     lengths = []
 | |
|     for doc in docs:
 | |
|         spans_list.append(doc[:2])
 | |
|         spans_list.append(doc[1:4])
 | |
|         lengths.append(2)
 | |
|     spans = Ragged(
 | |
|         tok2vec.ops.asarray([[s.start, s.end] for s in spans_list], dtype="i"),
 | |
|         tok2vec.ops.asarray(lengths, dtype="i"),
 | |
|     )
 | |
|     model = build_spancat_model(
 | |
|         tok2vec, reduce_mean(), chain(Relu(nO=nO), Logistic())
 | |
|     ).initialize(X=(docs, spans))
 | |
| 
 | |
|     Y, backprop = model((docs, spans), is_train=True)
 | |
|     assert Y.shape == (spans.dataXd.shape[0], nO)
 | |
|     backprop(Y)
 | |
| 
 | |
| 
 | |
| def test_textcat_reduce_invalid_args():
 | |
|     textcat_reduce = registry.architectures.get("spacy.TextCatReduce.v1")
 | |
|     tok2vec = make_test_tok2vec()
 | |
|     with pytest.raises(ValueError, match=r"must be used with at least one reduction"):
 | |
|         textcat_reduce(
 | |
|             tok2vec=tok2vec,
 | |
|             exclusive_classes=False,
 | |
|             use_reduce_first=False,
 | |
|             use_reduce_last=False,
 | |
|             use_reduce_max=False,
 | |
|             use_reduce_mean=False,
 | |
|         )
 |