mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			44 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			44 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from ...symbols import NOUN, PROPN, PRON
 | 
						|
 | 
						|
 | 
						|
def noun_chunks(obj):
 | 
						|
    """
 | 
						|
    Detect base noun phrases from a dependency parse. Works on both Doc and Span.
 | 
						|
    """
 | 
						|
    labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj',
 | 
						|
              'attr', 'ROOT']
 | 
						|
    doc = obj.doc # Ensure works on both Doc and Span.
 | 
						|
    np_deps = [doc.vocab.strings.add(label) for label in labels]
 | 
						|
    conj = doc.vocab.strings.add('conj')
 | 
						|
    np_label = doc.vocab.strings.add('NP')
 | 
						|
    seen = set()
 | 
						|
    for i, word in enumerate(obj):
 | 
						|
        if word.pos not in (NOUN, PROPN, PRON):
 | 
						|
            continue
 | 
						|
        # Prevent nested chunks from being produced
 | 
						|
        if word.i in seen:
 | 
						|
            continue
 | 
						|
        if word.dep in np_deps:
 | 
						|
            if any(w.i in seen for w in word.subtree):
 | 
						|
                continue
 | 
						|
            seen.update(j for j in range(word.left_edge.i, word.i+1))
 | 
						|
            yield word.left_edge.i, word.i+1, np_label
 | 
						|
        elif word.dep == conj:
 | 
						|
            head = word.head
 | 
						|
            while head.dep == conj and head.head.i < head.i:
 | 
						|
                head = head.head
 | 
						|
            # If the head is an NP, and we're coordinated to it, we're an NP
 | 
						|
            if head.dep in np_deps:
 | 
						|
                if any(w.i in seen for w in word.subtree):
 | 
						|
                    continue
 | 
						|
                seen.update(j for j in range(word.left_edge.i, word.i+1))
 | 
						|
                yield word.left_edge.i, word.i+1, np_label
 | 
						|
 | 
						|
 | 
						|
SYNTAX_ITERATORS = {
 | 
						|
    'noun_chunks': noun_chunks
 | 
						|
}
 |