mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Add implementation of batching + backwards compatibility fixes. Tests indicate issue with batch disambiguation for custom singular entity lookups. * Fix tests. Add distinction w.r.t. batch size. * Remove redundant and add new comments. * Adjust comments. Fix variable naming in EL prediction. * Fix mypy errors. * Remove KB entity type config option. Change return types of candidate retrieval functions to Iterable from Iterator. Fix various other issues. * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/kb_base.pyx Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/kb_base.pyx Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Add error messages to NotImplementedErrors. Remove redundant comment. * Fix imports. * Remove redundant comments. * Rename KnowledgeBase to InMemoryLookupKB and BaseKnowledgeBase to KnowledgeBase. * Fix tests. * Update spacy/errors.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move KB into subdirectory. * Adjust imports after KB move to dedicated subdirectory. * Fix config imports. * Move Candidate + retrieval functions to separate module. Fix other, small issues. * Fix docstrings and error message w.r.t. class names. Fix typing for candidate retrieval functions. * Update spacy/kb/kb_in_memory.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/ml/models/entity_linker.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix typing. * Change typing of mentions to be Span instead of Union[Span, str]. * Update docs. * Update EntityLinker and _architecture docs. * Update website/docs/api/entitylinker.md Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Adjust message for E1046. * Re-add section for Candidate in kb.md, add reference to dedicated page. * Update docs and docstrings. * Re-add section + reference for KnowledgeBase.get_alias_candidates() in docs. * Update spacy/kb/candidate.pyx * Update spacy/kb/kb_in_memory.pyx * Update spacy/pipeline/legacy/entity_linker.py * Remove canididate.md. Remove mistakenly added config snippet in entity_linker.py. Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			145 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Callable
 | |
| 
 | |
| from spacy import util
 | |
| from spacy.util import ensure_path, registry, load_model_from_config
 | |
| from spacy.kb.kb_in_memory import InMemoryLookupKB
 | |
| from spacy.vocab import Vocab
 | |
| from thinc.api import Config
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| from numpy import zeros
 | |
| 
 | |
| 
 | |
| def test_serialize_kb_disk(en_vocab):
 | |
|     # baseline assertions
 | |
|     kb1 = _get_dummy_kb(en_vocab)
 | |
|     _check_kb(kb1)
 | |
| 
 | |
|     # dumping to file & loading back in
 | |
|     with make_tempdir() as d:
 | |
|         dir_path = ensure_path(d)
 | |
|         if not dir_path.exists():
 | |
|             dir_path.mkdir()
 | |
|         file_path = dir_path / "kb"
 | |
|         kb1.to_disk(str(file_path))
 | |
|         kb2 = InMemoryLookupKB(vocab=en_vocab, entity_vector_length=3)
 | |
|         kb2.from_disk(str(file_path))
 | |
| 
 | |
|     # final assertions
 | |
|     _check_kb(kb2)
 | |
| 
 | |
| 
 | |
| def _get_dummy_kb(vocab):
 | |
|     kb = InMemoryLookupKB(vocab, entity_vector_length=3)
 | |
|     kb.add_entity(entity="Q53", freq=33, entity_vector=[0, 5, 3])
 | |
|     kb.add_entity(entity="Q17", freq=2, entity_vector=[7, 1, 0])
 | |
|     kb.add_entity(entity="Q007", freq=7, entity_vector=[0, 0, 7])
 | |
|     kb.add_entity(entity="Q44", freq=342, entity_vector=[4, 4, 4])
 | |
| 
 | |
|     kb.add_alias(alias="double07", entities=["Q17", "Q007"], probabilities=[0.1, 0.9])
 | |
|     kb.add_alias(
 | |
|         alias="guy",
 | |
|         entities=["Q53", "Q007", "Q17", "Q44"],
 | |
|         probabilities=[0.3, 0.3, 0.2, 0.1],
 | |
|     )
 | |
|     kb.add_alias(alias="random", entities=["Q007"], probabilities=[1.0])
 | |
| 
 | |
|     return kb
 | |
| 
 | |
| 
 | |
| def _check_kb(kb):
 | |
|     # check entities
 | |
|     assert kb.get_size_entities() == 4
 | |
|     for entity_string in ["Q53", "Q17", "Q007", "Q44"]:
 | |
|         assert entity_string in kb.get_entity_strings()
 | |
|     for entity_string in ["", "Q0"]:
 | |
|         assert entity_string not in kb.get_entity_strings()
 | |
| 
 | |
|     # check aliases
 | |
|     assert kb.get_size_aliases() == 3
 | |
|     for alias_string in ["double07", "guy", "random"]:
 | |
|         assert alias_string in kb.get_alias_strings()
 | |
|     for alias_string in ["nothingness", "", "randomnoise"]:
 | |
|         assert alias_string not in kb.get_alias_strings()
 | |
| 
 | |
|     # check candidates & probabilities
 | |
|     candidates = sorted(kb.get_alias_candidates("double07"), key=lambda x: x.entity_)
 | |
|     assert len(candidates) == 2
 | |
| 
 | |
|     assert candidates[0].entity_ == "Q007"
 | |
|     assert 6.999 < candidates[0].entity_freq < 7.01
 | |
|     assert candidates[0].entity_vector == [0, 0, 7]
 | |
|     assert candidates[0].alias_ == "double07"
 | |
|     assert 0.899 < candidates[0].prior_prob < 0.901
 | |
| 
 | |
|     assert candidates[1].entity_ == "Q17"
 | |
|     assert 1.99 < candidates[1].entity_freq < 2.01
 | |
|     assert candidates[1].entity_vector == [7, 1, 0]
 | |
|     assert candidates[1].alias_ == "double07"
 | |
|     assert 0.099 < candidates[1].prior_prob < 0.101
 | |
| 
 | |
| 
 | |
| def test_serialize_subclassed_kb():
 | |
|     """Check that IO of a custom KB works fine as part of an EL pipe."""
 | |
| 
 | |
|     config_string = """
 | |
|     [nlp]
 | |
|     lang = "en"
 | |
|     pipeline = ["entity_linker"]
 | |
| 
 | |
|     [components]
 | |
| 
 | |
|     [components.entity_linker]
 | |
|     factory = "entity_linker"
 | |
| 
 | |
|     [initialize]
 | |
| 
 | |
|     [initialize.components]
 | |
| 
 | |
|     [initialize.components.entity_linker]
 | |
| 
 | |
|     [initialize.components.entity_linker.kb_loader]
 | |
|     @misc = "spacy.CustomKB.v1"
 | |
|     entity_vector_length = 342
 | |
|     custom_field = 666
 | |
|     """
 | |
| 
 | |
|     class SubInMemoryLookupKB(InMemoryLookupKB):
 | |
|         def __init__(self, vocab, entity_vector_length, custom_field):
 | |
|             super().__init__(vocab, entity_vector_length)
 | |
|             self.custom_field = custom_field
 | |
| 
 | |
|     @registry.misc("spacy.CustomKB.v1")
 | |
|     def custom_kb(
 | |
|         entity_vector_length: int, custom_field: int
 | |
|     ) -> Callable[[Vocab], InMemoryLookupKB]:
 | |
|         def custom_kb_factory(vocab):
 | |
|             kb = SubInMemoryLookupKB(
 | |
|                 vocab=vocab,
 | |
|                 entity_vector_length=entity_vector_length,
 | |
|                 custom_field=custom_field,
 | |
|             )
 | |
|             kb.add_entity("random_entity", 0.0, zeros(entity_vector_length))
 | |
|             return kb
 | |
| 
 | |
|         return custom_kb_factory
 | |
| 
 | |
|     config = Config().from_str(config_string)
 | |
|     nlp = load_model_from_config(config, auto_fill=True)
 | |
|     nlp.initialize()
 | |
| 
 | |
|     entity_linker = nlp.get_pipe("entity_linker")
 | |
|     assert type(entity_linker.kb) == SubInMemoryLookupKB
 | |
|     assert entity_linker.kb.entity_vector_length == 342
 | |
|     assert entity_linker.kb.custom_field == 666
 | |
| 
 | |
|     # Make sure the custom KB is serialized correctly
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         entity_linker2 = nlp2.get_pipe("entity_linker")
 | |
|         # After IO, the KB is the standard one
 | |
|         assert type(entity_linker2.kb) == InMemoryLookupKB
 | |
|         assert entity_linker2.kb.entity_vector_length == 342
 | |
|         assert not hasattr(entity_linker2.kb, "custom_field")
 |