mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			280 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import List
 | 
						|
import pytest
 | 
						|
from thinc.api import fix_random_seed, Adam, set_dropout_rate
 | 
						|
from thinc.api import Ragged, reduce_mean, Logistic, chain, Relu
 | 
						|
from thinc.util import has_torch
 | 
						|
from numpy.testing import assert_array_equal, assert_array_almost_equal
 | 
						|
import numpy
 | 
						|
from spacy.ml.models import build_Tok2Vec_model, MultiHashEmbed, MaxoutWindowEncoder
 | 
						|
from spacy.ml.models import build_bow_text_classifier, build_simple_cnn_text_classifier
 | 
						|
if has_torch:
 | 
						|
    from spacy.ml.models import build_spancat_model, build_wl_coref_model
 | 
						|
from spacy.ml.staticvectors import StaticVectors
 | 
						|
from spacy.ml.extract_spans import extract_spans, _get_span_indices
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.lang.en.examples import sentences as EN_SENTENCES
 | 
						|
 | 
						|
 | 
						|
def get_textcat_bow_kwargs():
 | 
						|
    return {
 | 
						|
        "exclusive_classes": True,
 | 
						|
        "ngram_size": 1,
 | 
						|
        "no_output_layer": False,
 | 
						|
        "nO": 34,
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
def get_textcat_cnn_kwargs():
 | 
						|
    return {"tok2vec": test_tok2vec(), "exclusive_classes": False, "nO": 13}
 | 
						|
 | 
						|
 | 
						|
def get_all_params(model):
 | 
						|
    params = []
 | 
						|
    for node in model.walk():
 | 
						|
        for name in node.param_names:
 | 
						|
            params.append(node.get_param(name).ravel())
 | 
						|
    return node.ops.xp.concatenate(params)
 | 
						|
 | 
						|
 | 
						|
def get_docs():
 | 
						|
    nlp = English()
 | 
						|
    return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)]))
 | 
						|
 | 
						|
 | 
						|
def get_gradient(model, Y):
 | 
						|
    if isinstance(Y, model.ops.xp.ndarray):
 | 
						|
        dY = model.ops.alloc(Y.shape, dtype=Y.dtype)
 | 
						|
        dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape)
 | 
						|
        return dY
 | 
						|
    elif isinstance(Y, List):
 | 
						|
        return [get_gradient(model, y) for y in Y]
 | 
						|
    else:
 | 
						|
        raise ValueError(f"Could not get gradient for type {type(Y)}")
 | 
						|
 | 
						|
 | 
						|
def get_tok2vec_kwargs():
 | 
						|
    # This actually creates models, so seems best to put it in a function.
 | 
						|
    return {
 | 
						|
        "embed": MultiHashEmbed(
 | 
						|
            width=32,
 | 
						|
            rows=[500, 500, 500],
 | 
						|
            attrs=["NORM", "PREFIX", "SHAPE"],
 | 
						|
            include_static_vectors=False,
 | 
						|
        ),
 | 
						|
        "encode": MaxoutWindowEncoder(
 | 
						|
            width=32, depth=2, maxout_pieces=2, window_size=1
 | 
						|
        ),
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
def test_tok2vec():
 | 
						|
    return build_Tok2Vec_model(**get_tok2vec_kwargs())
 | 
						|
 | 
						|
 | 
						|
def test_multi_hash_embed():
 | 
						|
    embed = MultiHashEmbed(
 | 
						|
        width=32,
 | 
						|
        rows=[500, 500, 500],
 | 
						|
        attrs=["NORM", "PREFIX", "SHAPE"],
 | 
						|
        include_static_vectors=False,
 | 
						|
    )
 | 
						|
    hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
 | 
						|
    assert len(hash_embeds) == 3
 | 
						|
    # Check they look at different columns.
 | 
						|
    assert list(sorted(he.attrs["column"] for he in hash_embeds)) == [0, 1, 2]
 | 
						|
    # Check they use different seeds
 | 
						|
    assert len(set(he.attrs["seed"] for he in hash_embeds)) == 3
 | 
						|
    # Check they all have the same number of rows
 | 
						|
    assert [he.get_dim("nV") for he in hash_embeds] == [500, 500, 500]
 | 
						|
    # Now try with different row factors
 | 
						|
    embed = MultiHashEmbed(
 | 
						|
        width=32,
 | 
						|
        rows=[1000, 50, 250],
 | 
						|
        attrs=["NORM", "PREFIX", "SHAPE"],
 | 
						|
        include_static_vectors=False,
 | 
						|
    )
 | 
						|
    hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
 | 
						|
    assert [he.get_dim("nV") for he in hash_embeds] == [1000, 50, 250]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "seed,model_func,kwargs",
 | 
						|
    [
 | 
						|
        (0, build_Tok2Vec_model, get_tok2vec_kwargs()),
 | 
						|
        (0, build_bow_text_classifier, get_textcat_bow_kwargs()),
 | 
						|
        (0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs()),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_models_initialize_consistently(seed, model_func, kwargs):
 | 
						|
    fix_random_seed(seed)
 | 
						|
    model1 = model_func(**kwargs)
 | 
						|
    model1.initialize()
 | 
						|
    fix_random_seed(seed)
 | 
						|
    model2 = model_func(**kwargs)
 | 
						|
    model2.initialize()
 | 
						|
    params1 = get_all_params(model1)
 | 
						|
    params2 = get_all_params(model2)
 | 
						|
    assert_array_equal(model1.ops.to_numpy(params1), model2.ops.to_numpy(params2))
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "seed,model_func,kwargs,get_X",
 | 
						|
    [
 | 
						|
        (0, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
 | 
						|
        (0, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs),
 | 
						|
        (0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_models_predict_consistently(seed, model_func, kwargs, get_X):
 | 
						|
    fix_random_seed(seed)
 | 
						|
    model1 = model_func(**kwargs).initialize()
 | 
						|
    Y1 = model1.predict(get_X())
 | 
						|
    fix_random_seed(seed)
 | 
						|
    model2 = model_func(**kwargs).initialize()
 | 
						|
    Y2 = model2.predict(get_X())
 | 
						|
 | 
						|
    if model1.has_ref("tok2vec"):
 | 
						|
        tok2vec1 = model1.get_ref("tok2vec").predict(get_X())
 | 
						|
        tok2vec2 = model2.get_ref("tok2vec").predict(get_X())
 | 
						|
        for i in range(len(tok2vec1)):
 | 
						|
            for j in range(len(tok2vec1[i])):
 | 
						|
                assert_array_equal(
 | 
						|
                    numpy.asarray(model1.ops.to_numpy(tok2vec1[i][j])),
 | 
						|
                    numpy.asarray(model2.ops.to_numpy(tok2vec2[i][j])),
 | 
						|
                )
 | 
						|
 | 
						|
    try:
 | 
						|
        Y1 = model1.ops.to_numpy(Y1)
 | 
						|
        Y2 = model2.ops.to_numpy(Y2)
 | 
						|
    except Exception:
 | 
						|
        pass
 | 
						|
    if isinstance(Y1, numpy.ndarray):
 | 
						|
        assert_array_equal(Y1, Y2)
 | 
						|
    elif isinstance(Y1, List):
 | 
						|
        assert len(Y1) == len(Y2)
 | 
						|
        for y1, y2 in zip(Y1, Y2):
 | 
						|
            try:
 | 
						|
                y1 = model1.ops.to_numpy(y1)
 | 
						|
                y2 = model2.ops.to_numpy(y2)
 | 
						|
            except Exception:
 | 
						|
                pass
 | 
						|
            assert_array_equal(y1, y2)
 | 
						|
    else:
 | 
						|
        raise ValueError(f"Could not compare type {type(Y1)}")
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "seed,dropout,model_func,kwargs,get_X",
 | 
						|
    [
 | 
						|
        (0, 0.2, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
 | 
						|
        (0, 0.2, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs),
 | 
						|
        (0, 0.2, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X):
 | 
						|
    def get_updated_model():
 | 
						|
        fix_random_seed(seed)
 | 
						|
        optimizer = Adam(0.001)
 | 
						|
        model = model_func(**kwargs).initialize()
 | 
						|
        initial_params = get_all_params(model)
 | 
						|
        set_dropout_rate(model, dropout)
 | 
						|
        for _ in range(5):
 | 
						|
            Y, get_dX = model.begin_update(get_X())
 | 
						|
            dY = get_gradient(model, Y)
 | 
						|
            get_dX(dY)
 | 
						|
            model.finish_update(optimizer)
 | 
						|
        updated_params = get_all_params(model)
 | 
						|
        with pytest.raises(AssertionError):
 | 
						|
            assert_array_equal(
 | 
						|
                model.ops.to_numpy(initial_params), model.ops.to_numpy(updated_params)
 | 
						|
            )
 | 
						|
        return model
 | 
						|
 | 
						|
    model1 = get_updated_model()
 | 
						|
    model2 = get_updated_model()
 | 
						|
    assert_array_almost_equal(
 | 
						|
        model1.ops.to_numpy(get_all_params(model1)),
 | 
						|
        model2.ops.to_numpy(get_all_params(model2)),
 | 
						|
        decimal=5,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("model_func,kwargs", [(StaticVectors, {"nO": 128, "nM": 300})])
 | 
						|
def test_empty_docs(model_func, kwargs):
 | 
						|
    nlp = English()
 | 
						|
    model = model_func(**kwargs).initialize()
 | 
						|
    # Test the layer can be called successfully with 0, 1 and 2 empty docs.
 | 
						|
    for n_docs in range(3):
 | 
						|
        docs = [nlp("") for _ in range(n_docs)]
 | 
						|
        # Test predict
 | 
						|
        model.predict(docs)
 | 
						|
        # Test backprop
 | 
						|
        output, backprop = model.begin_update(docs)
 | 
						|
        backprop(output)
 | 
						|
 | 
						|
 | 
						|
def test_init_extract_spans():
 | 
						|
    extract_spans().initialize()
 | 
						|
 | 
						|
 | 
						|
def test_extract_spans_span_indices():
 | 
						|
    model = extract_spans().initialize()
 | 
						|
    spans = Ragged(
 | 
						|
        model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"),
 | 
						|
        model.ops.asarray([2, 1], dtype="i"),
 | 
						|
    )
 | 
						|
    x_lengths = model.ops.asarray([5, 10], dtype="i")
 | 
						|
    indices = _get_span_indices(model.ops, spans, x_lengths)
 | 
						|
    assert list(indices) == [0, 1, 2, 2, 10, 11]
 | 
						|
 | 
						|
 | 
						|
def test_extract_spans_forward_backward():
 | 
						|
    model = extract_spans().initialize()
 | 
						|
    X = Ragged(model.ops.alloc2f(15, 4), model.ops.asarray([5, 10], dtype="i"))
 | 
						|
    spans = Ragged(
 | 
						|
        model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"),
 | 
						|
        model.ops.asarray([2, 1], dtype="i"),
 | 
						|
    )
 | 
						|
    Y, backprop = model.begin_update((X, spans))
 | 
						|
    assert list(Y.lengths) == [3, 1, 2]
 | 
						|
    assert Y.dataXd.shape == (6, 4)
 | 
						|
    dX, spans2 = backprop(Y)
 | 
						|
    assert spans2 is spans
 | 
						|
    assert dX.dataXd.shape == X.dataXd.shape
 | 
						|
    assert list(dX.lengths) == list(X.lengths)
 | 
						|
 | 
						|
 | 
						|
def test_spancat_model_init():
 | 
						|
    model = build_spancat_model(
 | 
						|
        build_Tok2Vec_model(**get_tok2vec_kwargs()), reduce_mean(), Logistic()
 | 
						|
    )
 | 
						|
    model.initialize()
 | 
						|
 | 
						|
 | 
						|
def test_spancat_model_forward_backward(nO=5):
 | 
						|
    tok2vec = build_Tok2Vec_model(**get_tok2vec_kwargs())
 | 
						|
    docs = get_docs()
 | 
						|
    spans_list = []
 | 
						|
    lengths = []
 | 
						|
    for doc in docs:
 | 
						|
        spans_list.append(doc[:2])
 | 
						|
        spans_list.append(doc[1:4])
 | 
						|
        lengths.append(2)
 | 
						|
    spans = Ragged(
 | 
						|
        tok2vec.ops.asarray([[s.start, s.end] for s in spans_list], dtype="i"),
 | 
						|
        tok2vec.ops.asarray(lengths, dtype="i"),
 | 
						|
    )
 | 
						|
    model = build_spancat_model(
 | 
						|
        tok2vec, reduce_mean(), chain(Relu(nO=nO), Logistic())
 | 
						|
    ).initialize(X=(docs, spans))
 | 
						|
 | 
						|
    Y, backprop = model((docs, spans), is_train=True)
 | 
						|
    assert Y.shape == (spans.dataXd.shape[0], nO)
 | 
						|
    backprop(Y)
 | 
						|
 | 
						|
#TODO expand this
 | 
						|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
 | 
						|
def test_coref_model_init():
 | 
						|
    tok2vec = build_Tok2Vec_model(**get_tok2vec_kwargs())
 | 
						|
    model = build_wl_coref_model(tok2vec)
 |