spaCy/spacy/tests/matcher/test_phrase_matcher.py
Ines Montani e89708c3eb 💫 Allow matching non-ORTH attributes in PhraseMatcher (#2925)
* Allow matching non-orth attributes in PhraseMatcher (see #1971)

Usage: PhraseMatcher(nlp.vocab, attr='POS')

* Allow attr argument to be int

* Fix formatting

* Fix typo
2018-11-15 03:00:58 +01:00

83 lines
2.7 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
from spacy.matcher import PhraseMatcher
from spacy.tokens import Doc
from ..util import get_doc
def test_matcher_phrase_matcher(en_vocab):
doc = Doc(en_vocab, words=["Google", "Now"])
matcher = PhraseMatcher(en_vocab)
matcher.add('COMPANY', None, doc)
doc = Doc(en_vocab, words=["I", "like", "Google", "Now", "best"])
assert len(matcher(doc)) == 1
def test_phrase_matcher_length(en_vocab):
matcher = PhraseMatcher(en_vocab)
assert len(matcher) == 0
matcher.add('TEST', None, Doc(en_vocab, words=['test']))
assert len(matcher) == 1
matcher.add('TEST2', None, Doc(en_vocab, words=['test2']))
assert len(matcher) == 2
def test_phrase_matcher_contains(en_vocab):
matcher = PhraseMatcher(en_vocab)
matcher.add('TEST', None, Doc(en_vocab, words=['test']))
assert 'TEST' in matcher
assert 'TEST2' not in matcher
def test_phrase_matcher_string_attrs(en_vocab):
words1 = ['I', 'like', 'cats']
pos1 = ['PRON', 'VERB', 'NOUN']
words2 = ['Yes', ',', 'you', 'hate', 'dogs', 'very', 'much']
pos2 = ['INTJ', 'PUNCT', 'PRON', 'VERB', 'NOUN', 'ADV', 'ADV']
pattern = get_doc(en_vocab, words=words1, pos=pos1)
matcher = PhraseMatcher(en_vocab, attr='POS')
matcher.add('TEST', None, pattern)
doc = get_doc(en_vocab, words=words2, pos=pos2)
matches = matcher(doc)
assert len(matches) == 1
match_id, start, end = matches[0]
assert match_id == en_vocab.strings['TEST']
assert start == 2
assert end == 5
def test_phrase_matcher_string_attrs_negative(en_vocab):
"""Test that token with the control codes as ORTH are *not* matched."""
words1 = ['I', 'like', 'cats']
pos1 = ['PRON', 'VERB', 'NOUN']
words2 = ['matcher:POS-PRON', 'matcher:POS-VERB', 'matcher:POS-NOUN']
pos2 = ['X', 'X', 'X']
pattern = get_doc(en_vocab, words=words1, pos=pos1)
matcher = PhraseMatcher(en_vocab, attr='POS')
matcher.add('TEST', None, pattern)
doc = get_doc(en_vocab, words=words2, pos=pos2)
matches = matcher(doc)
assert len(matches) == 0
def test_phrase_matcher_bool_attrs(en_vocab):
words1 = ['Hello', 'world', '!']
words2 = ['No', 'problem', ',', 'he', 'said', '.']
pattern = Doc(en_vocab, words=words1)
matcher = PhraseMatcher(en_vocab, attr='IS_PUNCT')
matcher.add('TEST', None, pattern)
doc = Doc(en_vocab, words=words2)
matches = matcher(doc)
assert len(matches) == 2
match_id1, start1, end1 = matches[0]
match_id2, start2, end2 = matches[1]
assert match_id1 == en_vocab.strings['TEST']
assert match_id2 == en_vocab.strings['TEST']
assert start1 == 0
assert end1 == 3
assert start2 == 3
assert end2 == 6