mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-22 15:24:11 +03:00
a322d6d5f2
* Add SpanRuler component Add a `SpanRuler` component similar to `EntityRuler` that saves a list of matched spans to `Doc.spans[spans_key]`. The matches from the token and phrase matchers are deduplicated and sorted before assignment but are not otherwise filtered. * Update spacy/pipeline/span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix cast * Add self.key property * Use number of patterns as length * Remove patterns kwarg from init * Update spacy/tests/pipeline/test_span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add options for spans filter and setting to ents * Add `spans_filter` option as a registered function' * Make `spans_key` optional and if `None`, set to `doc.ents` instead of `doc.spans[spans_key]`. * Update and generalize tests * Add test for setting doc.ents, fix key property type * Fix typing * Allow independent doc.spans and doc.ents * If `spans_key` is set, set `doc.spans` with `spans_filter`. * If `annotate_ents` is set, set `doc.ents` with `ents_fitler`. * Use `util.filter_spans` by default as `ents_filter`. * Use a custom warning if the filter does not work for `doc.ents`. * Enable use of SpanC.id in Span * Support id in SpanRuler as Span.id * Update types * `id` can only be provided as string (already by `PatternType` definition) * Update all uses of Span.id/ent_id in Doc * Rename Span id kwarg to span_id * Update types and docs * Add ents filter to mimic EntityRuler overwrite_ents * Refactor `ents_filter` to take `entities, spans` args for more filtering options * Give registered filters more descriptive names * Allow registered `filter_spans` filter (`spacy.first_longest_spans_filter.v1`) to take any number of `Iterable[Span]` objects as args so it can be used for spans filter or ents filter * Implement future entity ruler as span ruler Implement a compatible `entity_ruler` as `future_entity_ruler` using `SpanRuler` as the underlying component: * Add `sort_key` and `sort_reverse` to allow the sorting behavior to be customized. (Necessary for the same sorting/filtering as in `EntityRuler`.) * Implement `overwrite_overlapping_ents_filter` and `preserve_existing_ents_filter` to support `EntityRuler.overwrite_ents` settings. * Add `remove_by_id` to support `EntityRuler.remove` functionality. * Refactor `entity_ruler` tests to parametrize all tests to test both `entity_ruler` and `future_entity_ruler` * Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns` properties. Additional changes: * Move all config settings to top-level attributes to avoid duplicating settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of casting.) * Format * Fix filter make method name * Refactor to use same error for removing by label or ID * Also provide existing spans to spans filter * Support ids property * Remove token_patterns and phrase_patterns * Update docstrings * Add span ruler docs * Fix types * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move sorting into filters * Check for all tokens in seen tokens in entity ruler filters * Remove registered sort key * Set Token.ent_id in a backwards-compatible way in Doc.set_ents * Remove sort options from API docs * Update docstrings * Rename entity ruler filters * Fix and parameterize scoring * Add id to Span API docs * Fix typo in API docs * Include explicit labeled=True for scorer Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
570 lines
20 KiB
Python
570 lines
20 KiB
Python
from typing import Optional, Union, List, Dict, Tuple, Iterable, Any, Callable
|
|
from typing import Sequence, Set, cast
|
|
import warnings
|
|
from functools import partial
|
|
from pathlib import Path
|
|
import srsly
|
|
|
|
from .pipe import Pipe
|
|
from ..training import Example
|
|
from ..language import Language
|
|
from ..errors import Errors, Warnings
|
|
from ..util import ensure_path, SimpleFrozenList, registry
|
|
from ..tokens import Doc, Span
|
|
from ..scorer import Scorer
|
|
from ..matcher import Matcher, PhraseMatcher
|
|
from .. import util
|
|
|
|
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
|
|
DEFAULT_SPANS_KEY = "ruler"
|
|
|
|
|
|
@Language.factory(
|
|
"future_entity_ruler",
|
|
assigns=["doc.ents"],
|
|
default_config={
|
|
"phrase_matcher_attr": None,
|
|
"validate": False,
|
|
"overwrite_ents": False,
|
|
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
|
"ent_id_sep": "__unused__",
|
|
},
|
|
default_score_weights={
|
|
"ents_f": 1.0,
|
|
"ents_p": 0.0,
|
|
"ents_r": 0.0,
|
|
"ents_per_type": None,
|
|
},
|
|
)
|
|
def make_entity_ruler(
|
|
nlp: Language,
|
|
name: str,
|
|
phrase_matcher_attr: Optional[Union[int, str]],
|
|
validate: bool,
|
|
overwrite_ents: bool,
|
|
scorer: Optional[Callable],
|
|
ent_id_sep: str,
|
|
):
|
|
if overwrite_ents:
|
|
ents_filter = prioritize_new_ents_filter
|
|
else:
|
|
ents_filter = prioritize_existing_ents_filter
|
|
return SpanRuler(
|
|
nlp,
|
|
name,
|
|
spans_key=None,
|
|
spans_filter=None,
|
|
annotate_ents=True,
|
|
ents_filter=ents_filter,
|
|
phrase_matcher_attr=phrase_matcher_attr,
|
|
validate=validate,
|
|
overwrite=False,
|
|
scorer=scorer,
|
|
)
|
|
|
|
|
|
@Language.factory(
|
|
"span_ruler",
|
|
assigns=["doc.spans"],
|
|
default_config={
|
|
"spans_key": DEFAULT_SPANS_KEY,
|
|
"spans_filter": None,
|
|
"annotate_ents": False,
|
|
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
|
|
"phrase_matcher_attr": None,
|
|
"validate": False,
|
|
"overwrite": True,
|
|
"scorer": {
|
|
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
|
"spans_key": DEFAULT_SPANS_KEY,
|
|
},
|
|
},
|
|
default_score_weights={
|
|
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
|
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
|
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
|
f"spans_{DEFAULT_SPANS_KEY}_per_type": None,
|
|
},
|
|
)
|
|
def make_span_ruler(
|
|
nlp: Language,
|
|
name: str,
|
|
spans_key: Optional[str],
|
|
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
|
|
annotate_ents: bool,
|
|
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
|
|
phrase_matcher_attr: Optional[Union[int, str]],
|
|
validate: bool,
|
|
overwrite: bool,
|
|
scorer: Optional[Callable],
|
|
):
|
|
return SpanRuler(
|
|
nlp,
|
|
name,
|
|
spans_key=spans_key,
|
|
spans_filter=spans_filter,
|
|
annotate_ents=annotate_ents,
|
|
ents_filter=ents_filter,
|
|
phrase_matcher_attr=phrase_matcher_attr,
|
|
validate=validate,
|
|
overwrite=overwrite,
|
|
scorer=scorer,
|
|
)
|
|
|
|
|
|
def prioritize_new_ents_filter(
|
|
entities: Iterable[Span], spans: Iterable[Span]
|
|
) -> List[Span]:
|
|
"""Merge entities and spans into one list without overlaps by allowing
|
|
spans to overwrite any entities that they overlap with. Intended to
|
|
replicate the overwrite_ents=True behavior from the EntityRuler.
|
|
|
|
entities (Iterable[Span]): The entities, already filtered for overlaps.
|
|
spans (Iterable[Span]): The spans to merge, may contain overlaps.
|
|
RETURNS (List[Span]): Filtered list of non-overlapping spans.
|
|
"""
|
|
get_sort_key = lambda span: (span.end - span.start, -span.start)
|
|
spans = sorted(spans, key=get_sort_key, reverse=True)
|
|
entities = list(entities)
|
|
new_entities = []
|
|
seen_tokens: Set[int] = set()
|
|
for span in spans:
|
|
start = span.start
|
|
end = span.end
|
|
if all(token.i not in seen_tokens for token in span):
|
|
new_entities.append(span)
|
|
entities = [e for e in entities if not (e.start < end and e.end > start)]
|
|
seen_tokens.update(range(start, end))
|
|
return entities + new_entities
|
|
|
|
|
|
@registry.misc("spacy.prioritize_new_ents_filter.v1")
|
|
def make_prioritize_new_ents_filter():
|
|
return prioritize_new_ents_filter
|
|
|
|
|
|
def prioritize_existing_ents_filter(
|
|
entities: Iterable[Span], spans: Iterable[Span]
|
|
) -> List[Span]:
|
|
"""Merge entities and spans into one list without overlaps by prioritizing
|
|
existing entities. Intended to replicate the overwrite_ents=False behavior
|
|
from the EntityRuler.
|
|
|
|
entities (Iterable[Span]): The entities, already filtered for overlaps.
|
|
spans (Iterable[Span]): The spans to merge, may contain overlaps.
|
|
RETURNS (List[Span]): Filtered list of non-overlapping spans.
|
|
"""
|
|
get_sort_key = lambda span: (span.end - span.start, -span.start)
|
|
spans = sorted(spans, key=get_sort_key, reverse=True)
|
|
entities = list(entities)
|
|
new_entities = []
|
|
seen_tokens: Set[int] = set()
|
|
seen_tokens.update(*(range(ent.start, ent.end) for ent in entities))
|
|
for span in spans:
|
|
start = span.start
|
|
end = span.end
|
|
if all(token.i not in seen_tokens for token in span):
|
|
new_entities.append(span)
|
|
seen_tokens.update(range(start, end))
|
|
return entities + new_entities
|
|
|
|
|
|
@registry.misc("spacy.prioritize_existing_ents_filter.v1")
|
|
def make_preverse_existing_ents_filter():
|
|
return prioritize_existing_ents_filter
|
|
|
|
|
|
def overlapping_labeled_spans_score(
|
|
examples: Iterable[Example], *, spans_key=DEFAULT_SPANS_KEY, **kwargs
|
|
) -> Dict[str, Any]:
|
|
kwargs = dict(kwargs)
|
|
attr_prefix = f"spans_"
|
|
kwargs.setdefault("attr", f"{attr_prefix}{spans_key}")
|
|
kwargs.setdefault("allow_overlap", True)
|
|
kwargs.setdefault("labeled", True)
|
|
kwargs.setdefault(
|
|
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
|
|
)
|
|
kwargs.setdefault("has_annotation", lambda doc: spans_key in doc.spans)
|
|
return Scorer.score_spans(examples, **kwargs)
|
|
|
|
|
|
@registry.scorers("spacy.overlapping_labeled_spans_scorer.v1")
|
|
def make_overlapping_labeled_spans_scorer(spans_key: str = DEFAULT_SPANS_KEY):
|
|
return partial(overlapping_labeled_spans_score, spans_key=spans_key)
|
|
|
|
|
|
class SpanRuler(Pipe):
|
|
"""The SpanRuler lets you add spans to the `Doc.spans` using token-based
|
|
rules or exact phrase matches.
|
|
|
|
DOCS: https://spacy.io/api/spanruler
|
|
USAGE: https://spacy.io/usage/rule-based-matching#spanruler
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
nlp: Language,
|
|
name: str = "span_ruler",
|
|
*,
|
|
spans_key: Optional[str] = DEFAULT_SPANS_KEY,
|
|
spans_filter: Optional[
|
|
Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]
|
|
] = None,
|
|
annotate_ents: bool = False,
|
|
ents_filter: Callable[
|
|
[Iterable[Span], Iterable[Span]], Iterable[Span]
|
|
] = util.filter_chain_spans,
|
|
phrase_matcher_attr: Optional[Union[int, str]] = None,
|
|
validate: bool = False,
|
|
overwrite: bool = False,
|
|
scorer: Optional[Callable] = partial(
|
|
overlapping_labeled_spans_score, spans_key=DEFAULT_SPANS_KEY
|
|
),
|
|
) -> None:
|
|
"""Initialize the span ruler. If patterns are supplied here, they
|
|
need to be a list of dictionaries with a `"label"` and `"pattern"`
|
|
key. A pattern can either be a token pattern (list) or a phrase pattern
|
|
(string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`.
|
|
|
|
nlp (Language): The shared nlp object to pass the vocab to the matchers
|
|
and process phrase patterns.
|
|
name (str): Instance name of the current pipeline component. Typically
|
|
passed in automatically from the factory when the component is
|
|
added. Used to disable the current span ruler while creating
|
|
phrase patterns with the nlp object.
|
|
spans_key (Optional[str]): The spans key to save the spans under. If
|
|
`None`, no spans are saved. Defaults to "ruler".
|
|
spans_filter (Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]):
|
|
The optional method to filter spans before they are assigned to
|
|
doc.spans. Defaults to `None`.
|
|
annotate_ents (bool): Whether to save spans to doc.ents. Defaults to
|
|
`False`.
|
|
ents_filter (Callable[[Iterable[Span], Iterable[Span]], List[Span]]):
|
|
The method to filter spans before they are assigned to doc.ents.
|
|
Defaults to `util.filter_chain_spans`.
|
|
phrase_matcher_attr (Optional[Union[int, str]]): Token attribute to
|
|
match on, passed to the internal PhraseMatcher as `attr`. Defaults
|
|
to `None`.
|
|
validate (bool): Whether patterns should be validated, passed to
|
|
Matcher and PhraseMatcher as `validate`.
|
|
overwrite (bool): Whether to remove any existing spans under this spans
|
|
key if `spans_key` is set, and/or to remove any ents under `doc.ents` if
|
|
`annotate_ents` is set. Defaults to `True`.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
|
spacy.pipeline.span_ruler.overlapping_labeled_spans_score.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#init
|
|
"""
|
|
self.nlp = nlp
|
|
self.name = name
|
|
self.spans_key = spans_key
|
|
self.annotate_ents = annotate_ents
|
|
self.phrase_matcher_attr = phrase_matcher_attr
|
|
self.validate = validate
|
|
self.overwrite = overwrite
|
|
self.spans_filter = spans_filter
|
|
self.ents_filter = ents_filter
|
|
self.scorer = scorer
|
|
self._match_label_id_map: Dict[int, Dict[str, str]] = {}
|
|
self.clear()
|
|
|
|
def __len__(self) -> int:
|
|
"""The number of all labels added to the span ruler."""
|
|
return len(self._patterns)
|
|
|
|
def __contains__(self, label: str) -> bool:
|
|
"""Whether a label is present in the patterns."""
|
|
for label_id in self._match_label_id_map.values():
|
|
if label_id["label"] == label:
|
|
return True
|
|
return False
|
|
|
|
@property
|
|
def key(self) -> Optional[str]:
|
|
"""Key of the doc.spans dict to save the spans under."""
|
|
return self.spans_key
|
|
|
|
def __call__(self, doc: Doc) -> Doc:
|
|
"""Find matches in document and add them as entities.
|
|
|
|
doc (Doc): The Doc object in the pipeline.
|
|
RETURNS (Doc): The Doc with added entities, if available.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#call
|
|
"""
|
|
error_handler = self.get_error_handler()
|
|
try:
|
|
matches = self.match(doc)
|
|
self.set_annotations(doc, matches)
|
|
return doc
|
|
except Exception as e:
|
|
return error_handler(self.name, self, [doc], e)
|
|
|
|
def match(self, doc: Doc):
|
|
self._require_patterns()
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", message="\\[W036")
|
|
matches = cast(
|
|
List[Tuple[int, int, int]],
|
|
list(self.matcher(doc)) + list(self.phrase_matcher(doc)),
|
|
)
|
|
deduplicated_matches = set(
|
|
Span(
|
|
doc,
|
|
start,
|
|
end,
|
|
label=self._match_label_id_map[m_id]["label"],
|
|
span_id=self._match_label_id_map[m_id]["id"],
|
|
)
|
|
for m_id, start, end in matches
|
|
if start != end
|
|
)
|
|
return sorted(list(deduplicated_matches))
|
|
|
|
def set_annotations(self, doc, matches):
|
|
"""Modify the document in place"""
|
|
# set doc.spans if spans_key is set
|
|
if self.key:
|
|
spans = []
|
|
if self.key in doc.spans and not self.overwrite:
|
|
spans = doc.spans[self.key]
|
|
spans.extend(
|
|
self.spans_filter(spans, matches) if self.spans_filter else matches
|
|
)
|
|
doc.spans[self.key] = spans
|
|
# set doc.ents if annotate_ents is set
|
|
if self.annotate_ents:
|
|
spans = []
|
|
if not self.overwrite:
|
|
spans = list(doc.ents)
|
|
spans = self.ents_filter(spans, matches)
|
|
try:
|
|
doc.ents = sorted(spans)
|
|
except ValueError:
|
|
raise ValueError(Errors.E854)
|
|
|
|
@property
|
|
def labels(self) -> Tuple[str, ...]:
|
|
"""All labels present in the match patterns.
|
|
|
|
RETURNS (set): The string labels.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#labels
|
|
"""
|
|
return tuple(sorted(set([cast(str, p["label"]) for p in self._patterns])))
|
|
|
|
@property
|
|
def ids(self) -> Tuple[str, ...]:
|
|
"""All IDs present in the match patterns.
|
|
|
|
RETURNS (set): The string IDs.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#ids
|
|
"""
|
|
return tuple(
|
|
sorted(set([cast(str, p.get("id")) for p in self._patterns]) - set([None]))
|
|
)
|
|
|
|
def initialize(
|
|
self,
|
|
get_examples: Callable[[], Iterable[Example]],
|
|
*,
|
|
nlp: Optional[Language] = None,
|
|
patterns: Optional[Sequence[PatternType]] = None,
|
|
):
|
|
"""Initialize the pipe for training.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
patterns (Optional[Iterable[PatternType]]): The list of patterns.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#initialize
|
|
"""
|
|
self.clear()
|
|
if patterns:
|
|
self.add_patterns(patterns) # type: ignore[arg-type]
|
|
|
|
@property
|
|
def patterns(self) -> List[PatternType]:
|
|
"""Get all patterns that were added to the span ruler.
|
|
|
|
RETURNS (list): The original patterns, one dictionary per pattern.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#patterns
|
|
"""
|
|
return self._patterns
|
|
|
|
def add_patterns(self, patterns: List[PatternType]) -> None:
|
|
"""Add patterns to the span ruler. A pattern can either be a token
|
|
pattern (list of dicts) or a phrase pattern (string). For example:
|
|
{'label': 'ORG', 'pattern': 'Apple'}
|
|
{'label': 'ORG', 'pattern': 'Apple', 'id': 'apple'}
|
|
{'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]}
|
|
|
|
patterns (list): The patterns to add.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#add_patterns
|
|
"""
|
|
|
|
# disable the nlp components after this one in case they haven't been
|
|
# initialized / deserialized yet
|
|
try:
|
|
current_index = -1
|
|
for i, (name, pipe) in enumerate(self.nlp.pipeline):
|
|
if self == pipe:
|
|
current_index = i
|
|
break
|
|
subsequent_pipes = [pipe for pipe in self.nlp.pipe_names[current_index:]]
|
|
except ValueError:
|
|
subsequent_pipes = []
|
|
with self.nlp.select_pipes(disable=subsequent_pipes):
|
|
phrase_pattern_labels = []
|
|
phrase_pattern_texts = []
|
|
for entry in patterns:
|
|
p_label = cast(str, entry["label"])
|
|
p_id = cast(str, entry.get("id", ""))
|
|
label = repr((p_label, p_id))
|
|
self._match_label_id_map[self.nlp.vocab.strings.as_int(label)] = {
|
|
"label": p_label,
|
|
"id": p_id,
|
|
}
|
|
if isinstance(entry["pattern"], str):
|
|
phrase_pattern_labels.append(label)
|
|
phrase_pattern_texts.append(entry["pattern"])
|
|
elif isinstance(entry["pattern"], list):
|
|
self.matcher.add(label, [entry["pattern"]])
|
|
else:
|
|
raise ValueError(Errors.E097.format(pattern=entry["pattern"]))
|
|
self._patterns.append(entry)
|
|
for label, pattern in zip(
|
|
phrase_pattern_labels,
|
|
self.nlp.pipe(phrase_pattern_texts),
|
|
):
|
|
self.phrase_matcher.add(label, [pattern])
|
|
|
|
def clear(self) -> None:
|
|
"""Reset all patterns.
|
|
|
|
RETURNS: None
|
|
DOCS: https://spacy.io/api/spanruler#clear
|
|
"""
|
|
self._patterns: List[PatternType] = []
|
|
self.matcher: Matcher = Matcher(self.nlp.vocab, validate=self.validate)
|
|
self.phrase_matcher: PhraseMatcher = PhraseMatcher(
|
|
self.nlp.vocab,
|
|
attr=self.phrase_matcher_attr,
|
|
validate=self.validate,
|
|
)
|
|
|
|
def remove(self, label: str) -> None:
|
|
"""Remove a pattern by its label.
|
|
|
|
label (str): Label of the pattern to be removed.
|
|
RETURNS: None
|
|
DOCS: https://spacy.io/api/spanruler#remove
|
|
"""
|
|
if label not in self:
|
|
raise ValueError(
|
|
Errors.E1024.format(attr_type="label", label=label, component=self.name)
|
|
)
|
|
self._patterns = [p for p in self._patterns if p["label"] != label]
|
|
for m_label in self._match_label_id_map:
|
|
if self._match_label_id_map[m_label]["label"] == label:
|
|
m_label_str = self.nlp.vocab.strings.as_string(m_label)
|
|
if m_label_str in self.phrase_matcher:
|
|
self.phrase_matcher.remove(m_label_str)
|
|
if m_label_str in self.matcher:
|
|
self.matcher.remove(m_label_str)
|
|
|
|
def remove_by_id(self, pattern_id: str) -> None:
|
|
"""Remove a pattern by its pattern ID.
|
|
|
|
pattern_id (str): ID of the pattern to be removed.
|
|
RETURNS: None
|
|
DOCS: https://spacy.io/api/spanruler#remove_by_id
|
|
"""
|
|
orig_len = len(self)
|
|
self._patterns = [p for p in self._patterns if p.get("id") != pattern_id]
|
|
if orig_len == len(self):
|
|
raise ValueError(
|
|
Errors.E1024.format(
|
|
attr_type="ID", label=pattern_id, component=self.name
|
|
)
|
|
)
|
|
for m_label in self._match_label_id_map:
|
|
if self._match_label_id_map[m_label]["id"] == pattern_id:
|
|
m_label_str = self.nlp.vocab.strings.as_string(m_label)
|
|
if m_label_str in self.phrase_matcher:
|
|
self.phrase_matcher.remove(m_label_str)
|
|
if m_label_str in self.matcher:
|
|
self.matcher.remove(m_label_str)
|
|
|
|
def _require_patterns(self) -> None:
|
|
"""Raise a warning if this component has no patterns defined."""
|
|
if len(self) == 0:
|
|
warnings.warn(Warnings.W036.format(name=self.name))
|
|
|
|
def from_bytes(
|
|
self, bytes_data: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
|
|
) -> "SpanRuler":
|
|
"""Load the span ruler from a bytestring.
|
|
|
|
bytes_data (bytes): The bytestring to load.
|
|
RETURNS (SpanRuler): The loaded span ruler.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#from_bytes
|
|
"""
|
|
self.clear()
|
|
deserializers = {
|
|
"patterns": lambda b: self.add_patterns(srsly.json_loads(b)),
|
|
}
|
|
util.from_bytes(bytes_data, deserializers, exclude)
|
|
return self
|
|
|
|
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
|
|
"""Serialize the span ruler to a bytestring.
|
|
|
|
RETURNS (bytes): The serialized patterns.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#to_bytes
|
|
"""
|
|
serializers = {
|
|
"patterns": lambda: srsly.json_dumps(self.patterns),
|
|
}
|
|
return util.to_bytes(serializers, exclude)
|
|
|
|
def from_disk(
|
|
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
|
|
) -> "SpanRuler":
|
|
"""Load the span ruler from a directory.
|
|
|
|
path (Union[str, Path]): A path to a directory.
|
|
RETURNS (SpanRuler): The loaded span ruler.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#from_disk
|
|
"""
|
|
self.clear()
|
|
path = ensure_path(path)
|
|
deserializers = {
|
|
"patterns": lambda p: self.add_patterns(srsly.read_jsonl(p)),
|
|
}
|
|
util.from_disk(path, deserializers, {})
|
|
return self
|
|
|
|
def to_disk(
|
|
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
|
|
) -> None:
|
|
"""Save the span ruler patterns to a directory.
|
|
|
|
path (Union[str, Path]): A path to a directory.
|
|
|
|
DOCS: https://spacy.io/api/spanruler#to_disk
|
|
"""
|
|
path = ensure_path(path)
|
|
serializers = {
|
|
"patterns": lambda p: srsly.write_jsonl(p, self.patterns),
|
|
}
|
|
util.to_disk(path, serializers, {})
|