mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-07 15:56:32 +03:00
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
from typing import Callable, List, Tuple
|
|
|
|
from thinc.api import Model, chain, with_array
|
|
from thinc.types import Floats1d, Floats2d
|
|
|
|
from ...tokens import Doc
|
|
from ...util import registry
|
|
|
|
InT = List[Doc]
|
|
OutT = Floats2d
|
|
|
|
|
|
@registry.architectures("spacy.SpanFinder.v1")
|
|
def build_finder_model(
|
|
tok2vec: Model[InT, List[Floats2d]], scorer: Model[OutT, OutT]
|
|
) -> Model[InT, OutT]:
|
|
|
|
logistic_layer: Model[List[Floats2d], List[Floats2d]] = with_array(scorer)
|
|
model: Model[InT, OutT] = chain(tok2vec, logistic_layer, flattener())
|
|
model.set_ref("tok2vec", tok2vec)
|
|
model.set_ref("scorer", scorer)
|
|
model.set_ref("logistic_layer", logistic_layer)
|
|
|
|
return model
|
|
|
|
|
|
def flattener() -> Model[List[Floats2d], Floats2d]:
|
|
"""Flattens the input to a 1-dimensional list of scores"""
|
|
|
|
def forward(
|
|
model: Model[Floats1d, Floats1d], X: List[Floats2d], is_train: bool
|
|
) -> Tuple[Floats2d, Callable[[Floats2d], List[Floats2d]]]:
|
|
lens = model.ops.asarray1i([len(doc) for doc in X])
|
|
Y = model.ops.flatten(X)
|
|
|
|
def backprop(dY: Floats2d) -> List[Floats2d]:
|
|
return model.ops.unflatten(dY, lens)
|
|
|
|
return Y, backprop
|
|
|
|
return Model("Flattener", forward=forward)
|