spaCy/spacy/tests/pipeline/test_factories.py
Ines Montani 75f3234404
💫 Refactor test suite (#2568)
## Description

Related issues: #2379 (should be fixed by separating model tests)

* **total execution time down from > 300 seconds to under 60 seconds** 🎉
* removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure
* changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version)
* merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways)
* tidied up and rewrote existing tests wherever possible

### Todo

- [ ] move tests to `/tests` and adjust CI commands accordingly
- [x] move model test suite from internal repo to `spacy-models`
- [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~
- [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted
- [ ] update documentation on how to run tests


### Types of change
enhancement, tests

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 23:38:44 +02:00

45 lines
1.3 KiB
Python

# coding: utf8
from __future__ import unicode_literals
import pytest
from spacy.language import Language
from spacy.tokens import Span
from ..util import get_doc
@pytest.fixture
def doc(en_tokenizer):
text = 'I like New York in Autumn.'
heads = [1, 0, 1, -2, -3, -1, -5]
tags = ['PRP', 'IN', 'NNP', 'NNP', 'IN', 'NNP', '.']
pos = ['PRON', 'VERB', 'PROPN', 'PROPN', 'ADP', 'PROPN', 'PUNCT']
deps = ['ROOT', 'prep', 'compound', 'pobj', 'prep', 'pobj', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads,
tags=tags, pos=pos, deps=deps)
doc.ents = [Span(doc, 2, 4, doc.vocab.strings['GPE'])]
doc.is_parsed = True
doc.is_tagged = True
return doc
def test_factories_merge_noun_chunks(doc):
assert len(doc) == 7
nlp = Language()
merge_noun_chunks = nlp.create_pipe('merge_noun_chunks')
merge_noun_chunks(doc)
assert len(doc) == 6
assert doc[2].text == 'New York'
def test_factories_merge_ents(doc):
assert len(doc) == 7
assert len(list(doc.ents)) == 1
nlp = Language()
merge_entities = nlp.create_pipe('merge_entities')
merge_entities(doc)
assert len(doc) == 6
assert len(list(doc.ents)) == 1
assert doc[2].text == 'New York'