mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 16:54:24 +03:00
2dbb332cea
* TextCatParametricAttention.v1: set key transform dimensions This is necessary for tok2vec implementations that initialize lazily (e.g. curated transformers). * Add lazily-initialized tok2vec to simulate transformers Add a lazily-initialized tok2vec to the tests and test the current textcat models with it. Fix some additional issues found using this test. * isort * Add `test.` prefix to `LazyInitTok2Vec.v1`
372 lines
13 KiB
Python
372 lines
13 KiB
Python
from functools import partial
|
|
from typing import List, Optional, Tuple, cast
|
|
|
|
from thinc.api import (
|
|
Dropout,
|
|
Gelu,
|
|
LayerNorm,
|
|
Linear,
|
|
Logistic,
|
|
Maxout,
|
|
Model,
|
|
ParametricAttention,
|
|
ParametricAttention_v2,
|
|
Relu,
|
|
Softmax,
|
|
SparseLinear,
|
|
SparseLinear_v2,
|
|
chain,
|
|
clone,
|
|
concatenate,
|
|
list2ragged,
|
|
reduce_first,
|
|
reduce_last,
|
|
reduce_max,
|
|
reduce_mean,
|
|
reduce_sum,
|
|
residual,
|
|
resizable,
|
|
softmax_activation,
|
|
with_cpu,
|
|
)
|
|
from thinc.layers.chain import init as init_chain
|
|
from thinc.layers.resizable import resize_linear_weighted, resize_model
|
|
from thinc.types import ArrayXd, Floats2d
|
|
|
|
from ...attrs import ORTH
|
|
from ...errors import Errors
|
|
from ...tokens import Doc
|
|
from ...util import registry
|
|
from ..extract_ngrams import extract_ngrams
|
|
from ..staticvectors import StaticVectors
|
|
from .tok2vec import get_tok2vec_width
|
|
|
|
NEG_VALUE = -5000
|
|
|
|
|
|
@registry.architectures("spacy.TextCatCNN.v2")
|
|
def build_simple_cnn_text_classifier(
|
|
tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
|
|
) -> Model[List[Doc], Floats2d]:
|
|
"""
|
|
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
|
If exclusive_classes=True, a softmax non-linearity is applied, so that the
|
|
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
|
is applied instead, so that outputs are in the range [0, 1].
|
|
"""
|
|
return build_reduce_text_classifier(
|
|
tok2vec=tok2vec,
|
|
exclusive_classes=exclusive_classes,
|
|
use_reduce_first=False,
|
|
use_reduce_last=False,
|
|
use_reduce_max=False,
|
|
use_reduce_mean=True,
|
|
nO=nO,
|
|
)
|
|
|
|
|
|
def resize_and_set_ref(model, new_nO, resizable_layer):
|
|
resizable_layer = resize_model(resizable_layer, new_nO)
|
|
model.set_ref("output_layer", resizable_layer.layers[0])
|
|
model.set_dim("nO", new_nO, force=True)
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.TextCatBOW.v2")
|
|
def build_bow_text_classifier(
|
|
exclusive_classes: bool,
|
|
ngram_size: int,
|
|
no_output_layer: bool,
|
|
nO: Optional[int] = None,
|
|
) -> Model[List[Doc], Floats2d]:
|
|
return _build_bow_text_classifier(
|
|
exclusive_classes=exclusive_classes,
|
|
ngram_size=ngram_size,
|
|
no_output_layer=no_output_layer,
|
|
nO=nO,
|
|
sparse_linear=SparseLinear(nO=nO),
|
|
)
|
|
|
|
|
|
@registry.architectures("spacy.TextCatBOW.v3")
|
|
def build_bow_text_classifier_v3(
|
|
exclusive_classes: bool,
|
|
ngram_size: int,
|
|
no_output_layer: bool,
|
|
length: int = 262144,
|
|
nO: Optional[int] = None,
|
|
) -> Model[List[Doc], Floats2d]:
|
|
if length < 1:
|
|
raise ValueError(Errors.E1056.format(length=length))
|
|
|
|
# Find k such that 2**(k-1) < length <= 2**k.
|
|
length = 2 ** (length - 1).bit_length()
|
|
|
|
return _build_bow_text_classifier(
|
|
exclusive_classes=exclusive_classes,
|
|
ngram_size=ngram_size,
|
|
no_output_layer=no_output_layer,
|
|
nO=nO,
|
|
sparse_linear=SparseLinear_v2(nO=nO, length=length),
|
|
)
|
|
|
|
|
|
def _build_bow_text_classifier(
|
|
exclusive_classes: bool,
|
|
ngram_size: int,
|
|
no_output_layer: bool,
|
|
sparse_linear: Model[Tuple[ArrayXd, ArrayXd, ArrayXd], ArrayXd],
|
|
nO: Optional[int] = None,
|
|
) -> Model[List[Doc], Floats2d]:
|
|
fill_defaults = {"b": 0, "W": 0}
|
|
with Model.define_operators({">>": chain}):
|
|
output_layer = None
|
|
if not no_output_layer:
|
|
fill_defaults["b"] = NEG_VALUE
|
|
output_layer = softmax_activation() if exclusive_classes else Logistic()
|
|
resizable_layer: Model[Floats2d, Floats2d] = resizable(
|
|
sparse_linear,
|
|
resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
|
|
)
|
|
model = extract_ngrams(ngram_size, attr=ORTH) >> resizable_layer
|
|
model = with_cpu(model, model.ops)
|
|
if output_layer:
|
|
model = model >> with_cpu(output_layer, output_layer.ops)
|
|
if nO is not None:
|
|
model.set_dim("nO", cast(int, nO))
|
|
model.set_ref("output_layer", sparse_linear)
|
|
model.attrs["multi_label"] = not exclusive_classes
|
|
model.attrs["resize_output"] = partial(
|
|
resize_and_set_ref, resizable_layer=resizable_layer
|
|
)
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.TextCatEnsemble.v2")
|
|
def build_text_classifier_v2(
|
|
tok2vec: Model[List[Doc], List[Floats2d]],
|
|
linear_model: Model[List[Doc], Floats2d],
|
|
nO: Optional[int] = None,
|
|
) -> Model[List[Doc], Floats2d]:
|
|
# TODO: build the model with _build_parametric_attention_with_residual_nonlinear
|
|
# in spaCy v4. We don't do this in spaCy v3 to preserve model
|
|
# compatibility.
|
|
exclusive_classes = not linear_model.attrs["multi_label"]
|
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
|
width = tok2vec.maybe_get_dim("nO")
|
|
attention_layer = ParametricAttention(width)
|
|
maxout_layer = Maxout(nO=width, nI=width)
|
|
norm_layer = LayerNorm(nI=width)
|
|
cnn_model = (
|
|
tok2vec
|
|
>> list2ragged()
|
|
>> attention_layer
|
|
>> reduce_sum()
|
|
>> residual(maxout_layer >> norm_layer >> Dropout(0.0))
|
|
)
|
|
|
|
nO_double = nO * 2 if nO else None
|
|
if exclusive_classes:
|
|
output_layer = Softmax(nO=nO, nI=nO_double)
|
|
else:
|
|
output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
|
|
model = (linear_model | cnn_model) >> output_layer
|
|
model.set_ref("tok2vec", tok2vec)
|
|
if model.has_dim("nO") is not False and nO is not None:
|
|
model.set_dim("nO", cast(int, nO))
|
|
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
|
|
model.set_ref("attention_layer", attention_layer)
|
|
model.set_ref("maxout_layer", maxout_layer)
|
|
model.set_ref("norm_layer", norm_layer)
|
|
model.attrs["multi_label"] = not exclusive_classes
|
|
|
|
model.init = init_ensemble_textcat # type: ignore[assignment]
|
|
return model
|
|
|
|
|
|
def init_ensemble_textcat(model, X, Y) -> Model:
|
|
# When tok2vec is lazily initialized, we need to initialize it before
|
|
# the rest of the chain to ensure that we can get its width.
|
|
tok2vec = model.get_ref("tok2vec")
|
|
tok2vec.initialize(X)
|
|
|
|
tok2vec_width = get_tok2vec_width(model)
|
|
model.get_ref("attention_layer").set_dim("nO", tok2vec_width)
|
|
model.get_ref("maxout_layer").set_dim("nO", tok2vec_width)
|
|
model.get_ref("maxout_layer").set_dim("nI", tok2vec_width)
|
|
model.get_ref("norm_layer").set_dim("nI", tok2vec_width)
|
|
model.get_ref("norm_layer").set_dim("nO", tok2vec_width)
|
|
init_chain(model, X, Y)
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.TextCatLowData.v1")
|
|
def build_text_classifier_lowdata(
|
|
width: int, dropout: Optional[float], nO: Optional[int] = None
|
|
) -> Model[List[Doc], Floats2d]:
|
|
# Don't document this yet, I'm not sure it's right.
|
|
# Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
|
|
with Model.define_operators({">>": chain, "**": clone}):
|
|
model = (
|
|
StaticVectors(width)
|
|
>> list2ragged()
|
|
>> ParametricAttention(width)
|
|
>> reduce_sum()
|
|
>> residual(Relu(width, width)) ** 2
|
|
>> Linear(nO, width)
|
|
)
|
|
if dropout:
|
|
model = model >> Dropout(dropout)
|
|
model = model >> Logistic()
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.TextCatParametricAttention.v1")
|
|
def build_textcat_parametric_attention_v1(
|
|
tok2vec: Model[List[Doc], List[Floats2d]],
|
|
exclusive_classes: bool,
|
|
nO: Optional[int] = None,
|
|
) -> Model[List[Doc], Floats2d]:
|
|
width = tok2vec.maybe_get_dim("nO")
|
|
parametric_attention = _build_parametric_attention_with_residual_nonlinear(
|
|
tok2vec=tok2vec,
|
|
nonlinear_layer=Maxout(nI=width, nO=width),
|
|
key_transform=Gelu(nI=width, nO=width),
|
|
)
|
|
with Model.define_operators({">>": chain}):
|
|
if exclusive_classes:
|
|
output_layer = Softmax(nO=nO)
|
|
else:
|
|
output_layer = Linear(nO=nO) >> Logistic()
|
|
model = parametric_attention >> output_layer
|
|
if model.has_dim("nO") is not False and nO is not None:
|
|
model.set_dim("nO", cast(int, nO))
|
|
model.set_ref("output_layer", output_layer)
|
|
model.attrs["multi_label"] = not exclusive_classes
|
|
|
|
return model
|
|
|
|
|
|
def _build_parametric_attention_with_residual_nonlinear(
|
|
*,
|
|
tok2vec: Model[List[Doc], List[Floats2d]],
|
|
nonlinear_layer: Model[Floats2d, Floats2d],
|
|
key_transform: Optional[Model[Floats2d, Floats2d]] = None,
|
|
) -> Model[List[Doc], Floats2d]:
|
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
|
width = tok2vec.maybe_get_dim("nO")
|
|
attention_layer = ParametricAttention_v2(nO=width, key_transform=key_transform)
|
|
norm_layer = LayerNorm(nI=width)
|
|
parametric_attention = (
|
|
tok2vec
|
|
>> list2ragged()
|
|
>> attention_layer
|
|
>> reduce_sum()
|
|
>> residual(nonlinear_layer >> norm_layer >> Dropout(0.0))
|
|
)
|
|
|
|
parametric_attention.init = _init_parametric_attention_with_residual_nonlinear
|
|
|
|
parametric_attention.set_ref("tok2vec", tok2vec)
|
|
parametric_attention.set_ref("attention_layer", attention_layer)
|
|
parametric_attention.set_ref("key_transform", key_transform)
|
|
parametric_attention.set_ref("nonlinear_layer", nonlinear_layer)
|
|
parametric_attention.set_ref("norm_layer", norm_layer)
|
|
|
|
return parametric_attention
|
|
|
|
|
|
def _init_parametric_attention_with_residual_nonlinear(model, X, Y) -> Model:
|
|
# When tok2vec is lazily initialized, we need to initialize it before
|
|
# the rest of the chain to ensure that we can get its width.
|
|
tok2vec = model.get_ref("tok2vec")
|
|
tok2vec.initialize(X)
|
|
|
|
tok2vec_width = get_tok2vec_width(model)
|
|
model.get_ref("attention_layer").set_dim("nO", tok2vec_width)
|
|
model.get_ref("key_transform").set_dim("nI", tok2vec_width)
|
|
model.get_ref("key_transform").set_dim("nO", tok2vec_width)
|
|
model.get_ref("nonlinear_layer").set_dim("nI", tok2vec_width)
|
|
model.get_ref("nonlinear_layer").set_dim("nO", tok2vec_width)
|
|
model.get_ref("norm_layer").set_dim("nI", tok2vec_width)
|
|
model.get_ref("norm_layer").set_dim("nO", tok2vec_width)
|
|
init_chain(model, X, Y)
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.TextCatReduce.v1")
|
|
def build_reduce_text_classifier(
|
|
tok2vec: Model,
|
|
exclusive_classes: bool,
|
|
use_reduce_first: bool,
|
|
use_reduce_last: bool,
|
|
use_reduce_max: bool,
|
|
use_reduce_mean: bool,
|
|
nO: Optional[int] = None,
|
|
) -> Model[List[Doc], Floats2d]:
|
|
"""Build a model that classifies pooled `Doc` representations.
|
|
|
|
Pooling is performed using reductions. Reductions are concatenated when
|
|
multiple reductions are used.
|
|
|
|
tok2vec (Model): the tok2vec layer to pool over.
|
|
exclusive_classes (bool): Whether or not classes are mutually exclusive.
|
|
use_reduce_first (bool): Pool by using the hidden representation of the
|
|
first token of a `Doc`.
|
|
use_reduce_last (bool): Pool by using the hidden representation of the
|
|
last token of a `Doc`.
|
|
use_reduce_max (bool): Pool by taking the maximum values of the hidden
|
|
representations of a `Doc`.
|
|
use_reduce_mean (bool): Pool by taking the mean of all hidden
|
|
representations of a `Doc`.
|
|
nO (Optional[int]): Number of classes.
|
|
"""
|
|
|
|
fill_defaults = {"b": 0, "W": 0}
|
|
reductions = []
|
|
if use_reduce_first:
|
|
reductions.append(reduce_first())
|
|
if use_reduce_last:
|
|
reductions.append(reduce_last())
|
|
if use_reduce_max:
|
|
reductions.append(reduce_max())
|
|
if use_reduce_mean:
|
|
reductions.append(reduce_mean())
|
|
|
|
if not len(reductions):
|
|
raise ValueError(Errors.E1057)
|
|
|
|
with Model.define_operators({">>": chain}):
|
|
cnn = tok2vec >> list2ragged() >> concatenate(*reductions)
|
|
nO_tok2vec = tok2vec.maybe_get_dim("nO")
|
|
nI = nO_tok2vec * len(reductions) if nO_tok2vec is not None else None
|
|
if exclusive_classes:
|
|
output_layer = Softmax(nO=nO, nI=nI)
|
|
fill_defaults["b"] = NEG_VALUE
|
|
resizable_layer: Model = resizable(
|
|
output_layer,
|
|
resize_layer=partial(
|
|
resize_linear_weighted, fill_defaults=fill_defaults
|
|
),
|
|
)
|
|
model = cnn >> resizable_layer
|
|
else:
|
|
output_layer = Linear(nO=nO, nI=nI)
|
|
resizable_layer = resizable(
|
|
output_layer,
|
|
resize_layer=partial(
|
|
resize_linear_weighted, fill_defaults=fill_defaults
|
|
),
|
|
)
|
|
model = cnn >> resizable_layer >> Logistic()
|
|
model.set_ref("output_layer", output_layer)
|
|
model.attrs["resize_output"] = partial(
|
|
resize_and_set_ref,
|
|
resizable_layer=resizable_layer,
|
|
)
|
|
model.set_ref("tok2vec", tok2vec)
|
|
if nO is not None:
|
|
model.set_dim("nO", cast(int, nO))
|
|
model.attrs["multi_label"] = not exclusive_classes
|
|
return model
|