mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 08:44:26 +03:00
7ebba86402
* Add TextCatReduce.v1 This is a textcat classifier that pools the vectors generated by a tok2vec implementation and then applies a classifier to the pooled representation. Three reductions are supported for pooling: first, max, and mean. When multiple reductions are enabled, the reductions are concatenated before providing them to the classification layer. This model is a generalization of the TextCatCNN model, which only supports mean reductions and is a bit of a misnomer, because it can also be used with transformers. This change also reimplements TextCatCNN.v2 using the new TextCatReduce.v1 layer. * Doc fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fully specify `TextCatCNN` <-> `TextCatReduce` equivalence * Move TextCatCNN docs to legacy, in prep for moving to spacy-legacy * Add back a test for TextCatCNN.v2 * Replace TextCatCNN in pipe configurations and templates * Add an infobox to the `TextCatReduce` section with an `TextCatCNN` anchor * Add last reduction (`use_reduce_last`) * Remove non-working TextCatCNN Netlify redirect * Revert layer changes for the quickstart * Revert one more quickstart change * Remove unused import * Fix docstring * Fix setting name in error message --------- Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
415 lines
15 KiB
Python
415 lines
15 KiB
Python
from itertools import islice
|
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
|
|
|
|
import numpy
|
|
from thinc.api import Config, Model, Optimizer, get_array_module, set_dropout_rate
|
|
from thinc.types import Floats2d
|
|
|
|
from ..errors import Errors
|
|
from ..language import Language
|
|
from ..scorer import Scorer
|
|
from ..tokens import Doc
|
|
from ..training import Example, validate_examples, validate_get_examples
|
|
from ..util import registry
|
|
from ..vocab import Vocab
|
|
from .trainable_pipe import TrainablePipe
|
|
|
|
single_label_default_config = """
|
|
[model]
|
|
@architectures = "spacy.TextCatEnsemble.v2"
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.Tok2Vec.v2"
|
|
|
|
[model.tok2vec.embed]
|
|
@architectures = "spacy.MultiHashEmbed.v2"
|
|
width = 64
|
|
rows = [2000, 2000, 500, 1000, 500]
|
|
attrs = ["NORM", "LOWER", "PREFIX", "SUFFIX", "SHAPE"]
|
|
include_static_vectors = false
|
|
|
|
[model.tok2vec.encode]
|
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
|
width = ${model.tok2vec.embed.width}
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
depth = 2
|
|
|
|
[model.linear_model]
|
|
@architectures = "spacy.TextCatBOW.v3"
|
|
exclusive_classes = true
|
|
length = 262144
|
|
ngram_size = 1
|
|
no_output_layer = false
|
|
"""
|
|
DEFAULT_SINGLE_TEXTCAT_MODEL = Config().from_str(single_label_default_config)["model"]
|
|
|
|
single_label_bow_config = """
|
|
[model]
|
|
@architectures = "spacy.TextCatBOW.v3"
|
|
exclusive_classes = true
|
|
length = 262144
|
|
ngram_size = 1
|
|
no_output_layer = false
|
|
"""
|
|
|
|
single_label_cnn_config = """
|
|
[model]
|
|
@architectures = "spacy.TextCatReduce.v1"
|
|
exclusive_classes = true
|
|
use_reduce_first = false
|
|
use_reduce_last = false
|
|
use_reduce_max = false
|
|
use_reduce_mean = true
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v2"
|
|
pretrained_vectors = null
|
|
width = 96
|
|
depth = 4
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
"""
|
|
|
|
|
|
@Language.factory(
|
|
"textcat",
|
|
assigns=["doc.cats"],
|
|
default_config={
|
|
"threshold": 0.0,
|
|
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
|
|
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
|
|
},
|
|
default_score_weights={
|
|
"cats_score": 1.0,
|
|
"cats_score_desc": None,
|
|
"cats_micro_p": None,
|
|
"cats_micro_r": None,
|
|
"cats_micro_f": None,
|
|
"cats_macro_p": None,
|
|
"cats_macro_r": None,
|
|
"cats_macro_f": None,
|
|
"cats_macro_auc": None,
|
|
"cats_f_per_type": None,
|
|
},
|
|
)
|
|
def make_textcat(
|
|
nlp: Language,
|
|
name: str,
|
|
model: Model[List[Doc], List[Floats2d]],
|
|
threshold: float,
|
|
scorer: Optional[Callable],
|
|
) -> "TextCategorizer":
|
|
"""Create a TextCategorizer component. The text categorizer predicts categories
|
|
over a whole document. It can learn one or more labels, and the labels are considered
|
|
to be mutually exclusive (i.e. one true label per doc).
|
|
|
|
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
|
scores for each category.
|
|
threshold (float): Cutoff to consider a prediction "positive".
|
|
scorer (Optional[Callable]): The scoring method.
|
|
"""
|
|
return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer)
|
|
|
|
|
|
def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
|
return Scorer.score_cats(
|
|
examples,
|
|
"cats",
|
|
multi_label=False,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@registry.scorers("spacy.textcat_scorer.v2")
|
|
def make_textcat_scorer():
|
|
return textcat_score
|
|
|
|
|
|
class TextCategorizer(TrainablePipe):
|
|
"""Pipeline component for single-label text classification.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab: Vocab,
|
|
model: Model,
|
|
name: str = "textcat",
|
|
*,
|
|
threshold: float,
|
|
scorer: Optional[Callable] = textcat_score,
|
|
) -> None:
|
|
"""Initialize a text categorizer for single-label classification.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
threshold (float): Unused, not needed for single-label (exclusive
|
|
classes) classification.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
|
Scorer.score_cats for the attribute "cats".
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#init
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self._rehearsal_model = None
|
|
cfg: Dict[str, Any] = {
|
|
"labels": [],
|
|
"threshold": threshold,
|
|
"positive_label": None,
|
|
}
|
|
self.cfg = dict(cfg)
|
|
self.scorer = scorer
|
|
|
|
@property
|
|
def support_missing_values(self):
|
|
# There are no missing values as the textcat should always
|
|
# predict exactly one label. All other labels are 0.0
|
|
# Subclasses may override this property to change internal behaviour.
|
|
return False
|
|
|
|
@property
|
|
def labels(self) -> Tuple[str]:
|
|
"""RETURNS (Tuple[str]): The labels currently added to the component.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#labels
|
|
"""
|
|
return tuple(self.cfg["labels"]) # type: ignore[arg-type, return-value]
|
|
|
|
@property
|
|
def label_data(self) -> List[str]:
|
|
"""RETURNS (List[str]): Information about the component's labels.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#label_data
|
|
"""
|
|
return self.labels # type: ignore[return-value]
|
|
|
|
def predict(self, docs: Iterable[Doc]):
|
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
|
|
|
docs (Iterable[Doc]): The documents to predict.
|
|
RETURNS: The models prediction for each document.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#predict
|
|
"""
|
|
if not any(len(doc) for doc in docs):
|
|
# Handle cases where there are no tokens in any docs.
|
|
tensors = [doc.tensor for doc in docs]
|
|
xp = self.model.ops.xp
|
|
scores = xp.zeros((len(list(docs)), len(self.labels)))
|
|
return scores
|
|
scores = self.model.predict(docs)
|
|
scores = self.model.ops.asarray(scores)
|
|
return scores
|
|
|
|
def set_annotations(self, docs: Iterable[Doc], scores) -> None:
|
|
"""Modify a batch of Doc objects, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
scores: The scores to set, produced by TextCategorizer.predict.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#set_annotations
|
|
"""
|
|
for i, doc in enumerate(docs):
|
|
for j, label in enumerate(self.labels):
|
|
doc.cats[label] = float(scores[i, j])
|
|
|
|
def update(
|
|
self,
|
|
examples: Iterable[Example],
|
|
*,
|
|
drop: float = 0.0,
|
|
sgd: Optional[Optimizer] = None,
|
|
losses: Optional[Dict[str, float]] = None,
|
|
) -> Dict[str, float]:
|
|
"""Learn from a batch of documents and gold-standard information,
|
|
updating the pipe's model. Delegates to predict and get_loss.
|
|
|
|
examples (Iterable[Example]): A batch of Example objects.
|
|
drop (float): The dropout rate.
|
|
sgd (thinc.api.Optimizer): The optimizer.
|
|
losses (Dict[str, float]): Optional record of the loss during training.
|
|
Updated using the component name as the key.
|
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#update
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
validate_examples(examples, "TextCategorizer.update")
|
|
self._validate_categories(examples)
|
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
|
# Handle cases where there are no tokens in any docs.
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
|
|
loss, d_scores = self.get_loss(examples, scores)
|
|
bp_scores(d_scores)
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
losses[self.name] += loss
|
|
return losses
|
|
|
|
def rehearse(
|
|
self,
|
|
examples: Iterable[Example],
|
|
*,
|
|
drop: float = 0.0,
|
|
sgd: Optional[Optimizer] = None,
|
|
losses: Optional[Dict[str, float]] = None,
|
|
) -> Dict[str, float]:
|
|
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
|
|
teach the current model to make predictions similar to an initial model,
|
|
to try to address the "catastrophic forgetting" problem. This feature is
|
|
experimental.
|
|
|
|
examples (Iterable[Example]): A batch of Example objects.
|
|
drop (float): The dropout rate.
|
|
sgd (thinc.api.Optimizer): The optimizer.
|
|
losses (Dict[str, float]): Optional record of the loss during training.
|
|
Updated using the component name as the key.
|
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#rehearse
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
if self._rehearsal_model is None:
|
|
return losses
|
|
validate_examples(examples, "TextCategorizer.rehearse")
|
|
self._validate_categories(examples)
|
|
docs = [eg.predicted for eg in examples]
|
|
if not any(len(doc) for doc in docs):
|
|
# Handle cases where there are no tokens in any docs.
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
scores, bp_scores = self.model.begin_update(docs)
|
|
target, _ = self._rehearsal_model.begin_update(docs)
|
|
gradient = scores - target
|
|
bp_scores(gradient)
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
losses[self.name] += (gradient**2).sum()
|
|
return losses
|
|
|
|
def _examples_to_truth(
|
|
self, examples: Iterable[Example]
|
|
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
|
nr_examples = len(list(examples))
|
|
truths = numpy.zeros((nr_examples, len(self.labels)), dtype="f")
|
|
not_missing = numpy.ones((nr_examples, len(self.labels)), dtype="f")
|
|
for i, eg in enumerate(examples):
|
|
for j, label in enumerate(self.labels):
|
|
if label in eg.reference.cats:
|
|
truths[i, j] = eg.reference.cats[label]
|
|
elif self.support_missing_values:
|
|
not_missing[i, j] = 0.0
|
|
truths = self.model.ops.asarray(truths) # type: ignore
|
|
return truths, not_missing # type: ignore
|
|
|
|
def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#get_loss
|
|
"""
|
|
validate_examples(examples, "TextCategorizer.get_loss")
|
|
self._validate_categories(examples)
|
|
truths, not_missing = self._examples_to_truth(examples)
|
|
not_missing = self.model.ops.asarray(not_missing) # type: ignore
|
|
d_scores = scores - truths
|
|
d_scores *= not_missing
|
|
mean_square_error = (d_scores**2).mean()
|
|
return float(mean_square_error), d_scores
|
|
|
|
def add_label(self, label: str) -> int:
|
|
"""Add a new label to the pipe.
|
|
|
|
label (str): The label to add.
|
|
RETURNS (int): 0 if label is already present, otherwise 1.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#add_label
|
|
"""
|
|
if not isinstance(label, str):
|
|
raise ValueError(Errors.E187)
|
|
if label in self.labels:
|
|
return 0
|
|
self._allow_extra_label()
|
|
self.cfg["labels"].append(label) # type: ignore[attr-defined]
|
|
if self.model and "resize_output" in self.model.attrs:
|
|
self.model = self.model.attrs["resize_output"](self.model, len(self.labels))
|
|
self.vocab.strings.add(label)
|
|
return 1
|
|
|
|
def initialize(
|
|
self,
|
|
get_examples: Callable[[], Iterable[Example]],
|
|
*,
|
|
nlp: Optional[Language] = None,
|
|
labels: Optional[Iterable[str]] = None,
|
|
positive_label: Optional[str] = None,
|
|
) -> None:
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
labels (Optional[Iterable[str]]): The labels to add to the component, typically generated by the
|
|
`init labels` command. If no labels are provided, the get_examples
|
|
callback is used to extract the labels from the data.
|
|
positive_label (Optional[str]): The positive label for a binary task with exclusive classes,
|
|
`None` otherwise and by default.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer#initialize
|
|
"""
|
|
validate_get_examples(get_examples, "TextCategorizer.initialize")
|
|
self._validate_categories(get_examples())
|
|
if labels is None:
|
|
for example in get_examples():
|
|
for cat in example.y.cats:
|
|
self.add_label(cat)
|
|
else:
|
|
for label in labels:
|
|
self.add_label(label)
|
|
if len(self.labels) < 2:
|
|
raise ValueError(Errors.E867)
|
|
if positive_label is not None:
|
|
if positive_label not in self.labels:
|
|
err = Errors.E920.format(pos_label=positive_label, labels=self.labels)
|
|
raise ValueError(err)
|
|
if len(self.labels) != 2:
|
|
err = Errors.E919.format(pos_label=positive_label, labels=self.labels)
|
|
raise ValueError(err)
|
|
self.cfg["positive_label"] = positive_label
|
|
subbatch = list(islice(get_examples(), 10))
|
|
doc_sample = [eg.reference for eg in subbatch]
|
|
label_sample, _ = self._examples_to_truth(subbatch)
|
|
self._require_labels()
|
|
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=doc_sample, Y=label_sample)
|
|
|
|
def _validate_categories(self, examples: Iterable[Example]):
|
|
"""Check whether the provided examples all have single-label cats annotations."""
|
|
for ex in examples:
|
|
vals = list(ex.reference.cats.values())
|
|
if vals.count(1.0) > 1:
|
|
raise ValueError(Errors.E895.format(value=ex.reference.cats))
|
|
for val in vals:
|
|
if not (val == 1.0 or val == 0.0):
|
|
raise ValueError(Errors.E851.format(val=val))
|